A theory is presented to predict deposition rates of fine particles in two-dimensional compressible boundary layer flows. The mathematical model developed accounts for diffusion due to both molecular and turbulent fluctuations in the boundary layer flow. Particle inertia is taken into account in establishing the condition on particle flux near the surface. Gravitational settling and thermophoresis are not considered. The model assumes that the fraction of particles sticking upon arrival at the surface is known, and thus, treats it as a given parameter. The theory is compared with a number of pipe and cascade experiments, and a reasonable agreement is obtained. A detailed application of the model to a turbine is also presented. Various regimes of particle transport are identified, and the range of validity of the model is discussed. An order of magnitude estimate is obtained for the time the turbine stage can be operated without requiring cleaning.

This content is only available via PDF.
You do not currently have access to this content.