Pure tone noise, blade row vibrations, and aerodynamic losses are phenomena which are influenced by stator and IGV blade wake production, decay, and interaction in an axial-flow compressor. The objective of this investigation is to develop a better understanding of the nature of stator and IGV blade wakes that are influenced by the presence of centrifugal forces due to flow curvature. A single sensor hot wire probe was employed to determine the three mean velocity components of stator and IGV wakes of a single stage compressor. These wake profiles indicated a varying decay rate of the tangential and axial wake velocity components and a wake profile similarity. An analysis, which predicts this trend, has been developed. The radial velocities are found to be appreciable in both IGV and the stator wakes. This wake data as well as the data from other sources are correlated in this paper. Appreciable static pressure gradient across the wake is found to exist near the trailing edge of both stator and IGV.

This content is only available via PDF.
You do not currently have access to this content.