Results are presented from an experimental study conducted to measure heat transfer rates at the rim of a rotating disk convectively cooled by impinging jets. The disk face contour radially inward from the rim is varied to simulate the geometric conditions found on gas turbine engine rotors. Heat transfer rates are found to be relatively unaffected by impingement for jet flowrates less than the order of one-tenth the disk pumping flow. Disk pumping flows are evaluated through the use of an analysis which accounts for the presence of the disk hub. At larger jet flowrates, heat transfer rates increase strongly with increasing jet flow, reaching two to three times the no-impingement values at jet flowrates approximately equal to the pumped flow. All the heat transfer results, both with and without jet impingement, are essentially unaffected by changes in the disk face contour.

This content is only available via PDF.
You do not currently have access to this content.