The objective of this paper is to experimentally and numerically investigate the transient cavitation flow during the startup process of mixed flow pump with emphasis on studying the influence of blade numbers. The transient cavitation simulation was studied based on the improved SST k-ω turbulence model and the Zwart cavitation model. Firstly, in order to obtain the relationship between transient flow rate and the variation of rotational speed at startup, a theoretical analysis based on the fast transients of centrifugal pump was first applied to mixed flow pump and was verified by the current experiment study. Subsequently, the influence of blade number on the cavitation flow in the startup was studied. It is found that the transient cavitation could be classified into four stages regardless of the number of blades: no cavitation stage, the cavitation growth stage, the cavitation reduction stage and the cavitation stabilization stage. However, the blade number does have an impact on the spatial-temporal evolution of cavitation. More specifically, when the blade number increases, the initial cavitation appeared lately, the coverage area of the triangular cavitation cloud and sheet cavitation both decreased, and the increase in blade number has a better inhibitory effect on the sheet cavitation at the cavitation growth stage, and can make sheet cavitation disappear more quickly at the cavitation reduction stage.

This content is only available via PDF.
You do not currently have access to this content.