Abstract

In this paper, the lattice Boltzmann method-large eddy simulation (LBM-LES) model was combined with the volume of fluid (VOF) method and used to simulate vortex flow in a typical pump intake. The strain rate tensor in the LES model is locally calculated utilizing nonequilibrium moments based on Chapman–Enskog expansion, and the bounce-back scheme is used for nonslip condition on the solid wall and VOF method for the free surface. The evolution of all kinds of cells on the free surface is based on the mass exchange in the VOF method, i.e., lattice Boltzmann-single phase (LB-SP) free surface model. The introduction of the external force terms is established through adding corresponding expressions on the right of the lattice Boltzmann equation (LBE), and by modifying the velocity. The predicted vortex flow patterns (core location and strength of the vortex) and velocity correlate with the experiments undertaken with the physical model. A comparison of the results demonstrates the feasibility and stability of the model and the numerical method in predicting vortex flows inside pump intakes. The model developed and presented in this paper provides a new analysis method of vortex flow patterns in pump intake from a mesoscopic perspective, enriches the relevant technologies, and makes corresponding contributions to further engineering applications.

References

References
1.
Kimura
,
N.
,
Ezure
,
T.
,
Tobita
,
A.
, and
Kamide
,
H.
,
2008
, “
Experimental Study on Gas Entrainment at Free Surface in Reactor Vessel of a Compact Sodium-Cooled Fast Reactor
,”
J. Nucl. Sci. Technol.
,
45
(
10
), pp.
1053
1062
.10.1080/18811248.2008.9711892
2.
Cristofano
,
L.
,
2014
, “
Nobili
,
M.
, and
Caruso
,
G.
, “
Experimental Study on Unstable Free Surface Vortices and Gas Entrainment Onset Conditions
,”
Exp. Therm. Fluid. Sci.
,
42
, pp.
265
270
.10.1016/j.expthermflusci.2013.09.015
3.
Guo
,
M.
,
Zuo
,
Z. G.
,
Liu
,
S. H.
,
Zou
,
H. J.
,
Chen
,
B. Y.
, and
Li
,
D. Y.
,
2020
, “
Experimental Vortex Flow Patterns in the Primary and Secondary Pump Intakes of a Model Underground Pumping Station
,”
Energies
,
13
(
7
), p.
1790
.10.3390/en13071790
4.
Monshizadeh
,
M.
,
Tahershamsi
,
A.
,
Rahimzadeh
,
H.
, and
Sarkardeh
,
H.
,
2017
, “
Comparison Between Hydraulic and Structural Based Anti-Vortex Methods at Intakes
,”
Eur. Phys. J. Plus.
132
(
8
), pp.
1
11
.10.1140/epjp/i2017-11608-4
5.
Padmanabhan
,
M.
, and
Hecker
,
G. E.
,
1984
, “
Scale Effects in Pump Sump Models
,”
J. Hydraul. Eng.
,
110
(
11
), pp.
1540
1556
.10.1061/(ASCE)0733-9429(1984)110:11(1540)
6.
Yildirim
,
N.
, and
Kocabaş
,
F.
,
1995
, “
Critical Submergence for Intakes in Open Channel Flow
,”
J. Hydraul. Eng.
,
121
(
12
), pp.
900
905
.10.1061/(ASCE)0733-9429(1995)121:12(900)
7.
Rajendran
,
V. P.
, and
Patel
,
V. C.
,
2000
, “
Measurement of Vortices in a Model Pump-Intake Bay by PIV
,”
J. Hydraul. Eng.
,
126
(
5
), pp.
322
334
.10.1061/(ASCE)0733-9429(2000)126:5(322)
8.
Cristofano
,
L.
, and
Nobili
,
M.
,
2015
, “
Influence of Boundary Conditions in Numerical Simulation of Free Surface Vortices
,”
Energy Procedia
,
82
, pp.
893
899
.10.1016/j.egypro.2015.11.836
9.
Tokyay
,
T. E.
, and
Constantinescu
,
S. G.
,
2006
, “
Validation of a Large-Eddy Simulation Model to Simulate Flow in Pump Intakes of Realistic Geometry
,”
J. Hydraul. Eng.
,
132
(
12
), pp.
1303
1315
.10.1061/(ASCE)0733-9429(2006)132:12(1303)
10.
Li
,
S. H.
,
Lai
,
Y.
,
Weber
,
L.
,
Silva
,
J. M.
, and
Patel
,
V. C.
,
2004
, “
Validation of a Three-Dimensional Numerical Model for Water-Pump Intakes
,”
J. Hydraul Res.
,
42
(
3
), pp.
282
292
.10.1080/00221686.2004.9641196
11.
Guo
,
Z. W.
,
Chen
,
F.
,
Wu
,
R. F.
, and
Qian
,
Z. D.
,
2017
, “
Three-Dimensional Simulation of Air Entrainment in a Sump Pump
,”
J. Hydraul. Eng.
,
143
(
9
), p.
04017024
.10.1061/(ASCE)HY.1943-7900.0001321
12.
Tanweer
,
S.
, and
Desmukh
,
V. K. G.
,
2011
, “
Numerical Study of Flow Behavior in a Multiple Intake Pump Sump
,”
Int. J. Adv. Eng. Technol.
,
2
(
2
), pp.
118
128
. http://technicaljournalsonline.com/ijeat/VOL%20I
13.
Ansar
,
M.
,
Nakato
,
T.
, and
Constantinescu
,
G.
,
2002
, “
Numerical Simulations of Inviscid Three- Dimensional Flows at Single- and Dual-Pump Intakes
,”
J. Hydraul. Res.
,
40
(
4
), pp.
461
471
.10.1080/00221680209499888
14.
Constantinescu
,
G.
, and
Patel
,
V. C.
,
2000
, “
Role of Turbulence Model in Prediction of Pump-Bay Vortices
,”
J. Hydraul. Eng.
,
126
(
5
), pp.
387
391
.10.1061/(ASCE)0733-9429(2000)126:5(387)
15.
Rajendran
,
V. P.
,
Constantinescu
,
S. G.
, and
Patel
,
V. C.
,
1999
, “
Experimental Validation of Numerical Model of Flow in Pump-Intake Bays
,”
J. Hydraul. Eng.
,
125
(
11
), pp.
1119
1125
.10.1061/(ASCE)0733-9429(1999)125:11(1119)
16.
Schneider
,
A.
,
Conrad
,
D.
, and
Bohle
,
M.
,
2015
, “
Lattice Boltzmann Simulation of the Flow Field in Pump Intakes-a New Approach
,”
ASME J. Fluids Eng.
,
137
, pp.
1
10
.10.1115/FEDSM2013-16338
17.
Chen
,
S.
,
Chen
,
H.
,
Martnez
,
D.
, and
Matthaeus
,
W.
,
1991
, “
Lattice Boltzmann Model for Simulation of Magneto-Hydrodynamics
,”
Phys. Rev. Lett.
,
67
(
27
), pp.
3776
3779
.10.1103/PhysRevLett.67.3776
18.
Guo
,
M.
,
Tang
,
X. L.
,
Su
,
Y. W.
,
Li
,
X. Q.
, and
Wang
,
F. J.
,
2018
, “
Applications of Three-Dimensional LBM-LES Combined Model for Pump Intakes
,”
Commun. Comput. Phys.
,
24
(
1
), pp.
104
122
.10.4208/cicp.OA-2017-0092
19.
Hydraulic Institute
,
1998
, “
American National Standard for Pump Intake Design
,” Hydraulic Institute, Horsholm, Denmark, Standard No. ANSI-HI 9.8-1998.
20.
Japan Society of Mechanical Engineers
,
1984
, “Standard Method for Model Testing the Performance of a Pump Sump,”
Japan Society of Mechanical Engineers
,
Tokyo
,
Japan
, Standard No. S004-1984.
21.
The Ministry of Water Resource of People's Republic of China
,
2012
,
Specification for Normal Hydraulic Model Test
,
China Water & Power Press
,
Beijing
,
China
(In Chinese).
22.
Pismen
,
L. M.
,
2001
, “
Nonlocal Diffuse Interface Theory of Thin Films and the Moving Contact Line
,”
Phys. Rev. E
,
64
(
2
), p.
021603
.10.1103/PhysRevE.64.021603
23.
Bhaumik
,
S. K.
, and
Lakshmisha
,
K. N.
,
2007
, “
Lattice Boltzmann Simulation of Lid-Driven Swirling Flow in Confined Cylindrical Cavity
,”
Comput. Fluids
,
36
(
7
), pp.
1163
1173
.10.1016/j.compfluid.2007.02.001
24.
Liu
,
G. W.
,
Zhang
,
Q. H.
, and
Zhang
,
J. F.
,
2020
, “
Development of Two-Dimensional Numerical Wave Tank Based on Lattice Boltzmann Method
,”
J. Hydrodyn.
,
32
(
1
), pp.
116
125
.10.1007/s42241-019-0039-8
25.
Pradhan
,
A.
, and
Yadav
,
S.
,
2015
, “
Large Eddy Simulation Using Lattice Boltzmann Method Based on Sigma Model
,”
Procedia Eng.
,
127
, pp.
177
184
.10.1016/j.proeng.2015.11.324
26.
Succi
,
S.
,
Karlin
,
V. I.
, and
Chen
,
H.
,
2002
, “
Role of the H Theorem in Lattice Boltzmann Hydrodynamic Simulations
,”
Rev. Mod. Phys.
,
74
(
4
), pp.
1203
1220
.10.1103/RevModPhys.74.1203
27.
Yu
,
D.
,
Mei
,
R.
,
Luo
,
L. S.
, and
Wei
,
S.
,
2003
, “
Viscous Flow Computations With the Method of Lattice Boltzmann Equation
,”
Prog. Aerosp. Sci.
,
39
(
5
), pp.
329
367
.10.1016/S0376-0421(03)00003-4
28.
Mierke
,
D.
,
Janßen
,
C. F.
, and
Rung
,
T.
,
2020
, “
An Efficient Algorithm for the Calculation of Sub-Grid Distances for Higher-Order LBM Boundary Conditions in a GPU Simulation Environment
,”
Comput. Math. Appl.
,
79
(
1
), pp.
66
87
.10.1016/j.camwa.2018.04.022
29.
He
,
X. Y.
, and
Luo
,
L. S.
,
1997
, “
A Priori Derivation of the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
55
(
6
), pp.
R6333
6336
.10.1103/PhysRevE.55.R6333
30.
Sheng
,
H. C.
,
2011
,
Statistical Mechanics
,
University of Science and Technology of China Press
,
Hefei, China
.
31.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Model for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
.10.1209/0295-5075/17/6/001
32.
Yu
,
X.
,
Tang
,
X.
,
Wang
,
W.
,
Wang
,
F.
,
Chen
,
Z.
, and
Shi
,
X.
,
2010
, “
A Lattice Boltzmann Model Coupled With a Large Eddy Simulation Model for Flows Around a Groyne
,”
Int. J. Sediment Res.
,
25
(
3
), pp.
271
282
.10.1016/S1001-6279(10)60044-3
33.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Mon. Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
34.
Li
,
C.
,
Zhao
,
Y.
,
Ai
,
D.
,
Wang
,
Q.
,
Peng
,
Z.
, and
Li
,
Y.
,
2020
, “
Multi-Component LBM-LES Model of the Air and Methane Flow in Tunnels and Its Validation
,”
Physica A
,
553
(
553
), p.
124279
.10.1016/j.physa.2020.124279
35.
Nemati
,
M.
,
Abady
,
A. R. S. N.
,
Toghraie
,
D.
, and
Karimipour
,
A.
,
2018
, “
Numerical Investigation of the Pseudopotential Lattice Boltzmann Modeling of Liquid-Vapor for Multi-Phase Flows
,”
Phys. A
,
489
, pp.
65
77
.10.1016/j.physa.2017.07.013
36.
Shan
,
X.
, and
Chen
,
H.
,
1994
, “
Simulation of Nonideal Gases and Liquid-Gas Phase Transitions by the Lattice Boltzmann Equation
,”
Phys. Rev. E
,
49
(
4
), pp.
2941
2948
.10.1103/PhysRevE.49.2941
37.
Swift
,
M. R.
,
Osborn
,
W. R.
, and
Yeomans
,
J. M.
,
1995
, “
Lattice Boltzmann Simulation of Non-Ideal Fluids
,”
Phys. Rev. Lett.
,
75
(
5
), pp.
830
833
.10.1103/PhysRevLett.75.830
38.
Xie
,
C. Y.
,
Zhang
,
J. Y.
,
Bertola
,
V.
, and
Wang
,
M.
,
2016
, “
Lattice Boltzmann Modeling for Multiphase Viscoplastic Fluid Flow
,”
J. Non-Newton Fluid.
,
234
, pp.
118
128
.10.1016/j.jnnfm.2016.05.003
39.
Thürey
,
N.
,
2007
, “
Physically Based Animation of Free Surface Flows With the Lattice Boltzmann Method
,” Doctor of Philosophy,
University of Erlangen-Nuremberg
,
Germany
.
40.
Lafaurie
,
B.
,
Nardone
,
C.
,
Scardovelli
,
R.
,
Zaleski
,
S.
, and
Zanetti
,
G.
,
1994
, “
Modeling Merging and Fragmentation in Multiphase Flows With Surfer
,”
J. Comput. Phys.
,
1
(
113
), pp.
135
147
.10.1006/jcph.1994.1123
41.
Xing
,
X.
,
Butler
,
D. L.
, and
Yang
,
C.
,
2007
, “
A Lattice Boltzmann Based Single-Phase Method for Modeling Surface Tension and Wetting
,”
Comp. Mater. Sci.
,
39
(
2
), pp.
282
290
.10.1016/j.commatsci.2006.06.007
42.
Buick
,
J. M.
, and
Greated
,
C. A.
,
2000
, “
Gravity in a Lattice Boltzmann Model
,”
Phys. Rev. E
,
61
(
5
), pp.
5307
5320
.10.1103/PhysRevE.61.5307
43.
Zhang
,
R.
,
Chen
,
H. X.
, and
Wang
,
X. Y.
,
2011
, “
Simulation of Free Surface Vortex Upon Suction Inlet Based on LES- LBM
,”
J. Drain. Irrig. Mach. Eng.
,
29
(
5
), pp.
386
391
.10.3969/j.issn.1674-8530.2011.05.004
44.
Yan
,
Y-h.
,
Yang
,
F.
,
Qian
,
Z-D.
, and
Qian
,
Y-h.
,
2010
, “
Modified Surface Tension Model for Free Surface Flow With Single-Phase Lattice Boltzmann Method
,”
J. Shanghai Univ.
,
14
(
2
), pp.
145
149
.10.1007/s11741-010-0213-2
45.
Donath
,
S.
,
Mecke
,
K.
,
Rabha
,
S.
,
Buwa
,
V.
, and
Rude
,
U.
,
2011
, “
Verification of Surface Tension in the Parallel Free Surface Lattice Boltzmann Method in waLBerla
,”
Comput. Fluids
,
45
(
1
), pp.
177
186
.10.1016/j.compfluid.2010.12.027
46.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond
,
Oxford University
,
Oxford, UK
.
47.
Yang
,
Y.
,
2013
, “
Numerical Simulation of Free-Surface Flows Based on the Lattice Boltzmann Method
,” Doctor of Philosophy,
China
,
Huazhong University of Science and Technology
,
Hangzhou, China
.
48.
Guo
,
Z.
,
Zheng
,
C.
, and
Shi
,
B.
,
2002
, “
Discrete Lattice Effects on the Forcing Term in the Lattice Boltzmann Method
,”
Phys. Rev. E
,
65
(
4
), p.
046308
.10.1103/PhysRevE.65.046308
49.
Zhou
,
M. D.
, and
Wu
,
J. Z.
,
2006
,
Vorticity and Vortex Dynamics
,
Springer
,
Berlin, Germany
.
50.
Zhu
,
K. Q.
,
Tong
,
B. G.
, and
Yin
,
X. Y.
,
2012
,
Vortex Dynamic Theory
,
University of Science and Technology of China Press
,
Hefei, China
.
51.
Guo
,
X. D.
,
2007
, “
Research on DNS and LES of Turbulent Flow Over a Backward-Facing Step
,” Doctor of Philosophy,
Nanjing University of Aeronautics and Astronautics
,
China
.
52.
Erik
,
M. S.
,
Walter
,
J. A.
, and
Han
,
Z.
,
2016
, “
Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation
,”
PLoS One
,
1
, pp.
1
19.
10.1371/journal.pone.0147206
53.
Zou
,
Q.
, and
He
,
X.
,
1997
, “
On Pressure and Velocity Boundary Conditions for the Lattice Boltzmann BGK Model
,”
Phys. Fluids
,
9
(
6
), pp.
1591
1598
.10.1063/1.869307
54.
Zhang
,
J. F.
, and
Kwok
,
D. Y.
,
2004
, “
Apparent Slip Over a Solid-Liquid Interface With a No-Slip Boundary Condition
,”
Phys. Rev. E
,
70
(
5
), pp.
1
4
.10.1103/PhysRevE.70.056701
55.
Bouzidi
,
M.
,
Firdaouss
,
M.
, and
Lallemand
,
P.
,
2001
, “
Momentum Transfer of a Boltzmann-Lattice Fluid With Boundaries
,”
Phys. Fluids
,
13
(
11
), pp.
3452
3459
.10.1063/1.1399290
56.
Mei
,
R.
,
Luo
,
L. S.
, and
Shyy
,
W.
,
1999
, “
An Accurate Curved Boundary Treatment in the Lattice Boltzmann Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
307
330
.10.1006/jcph.1999.6334
57.
Guo
,
M.
,
Tang
,
X. L.
,
Wang
,
F. J.
,
Li
,
X. Q.
, and
Shi
,
X. Y.
,
2020
, “
Investigation on the Free-Surface Vortices in Closed Pump Intake Under Different Pressure Conditions at Free Surface by Stereo PIV
,”
J. Nucl. Sci. Technol.
(epub).10.1080/00223131.2020.1819906
58.
Guo
,
M.
,
Tang
,
X. L.
,
Li
,
X. Q.
, and
Wang
,
F. J.
,
2019
, “
Stereo PIV Measurement of Vortices in a Model Pump Intake
,”
IOP Conf. Ser. Earth Environ. Sci.
,
240
(
7
), p.
072020
.10.1088/1755-1315/240/7/072020
59.
Denney
,
D. F.
,
2006
, “
An Experimental Study of Air-Entraining Vortices in Pump Sumps
,”
Arch. Proc. Inst. Mech.
,
170
(
1956
), pp.
106
125
.10.1243/PIME_PROC_1956_170_019_02
You do not currently have access to this content.