Abstract

Computational study of flow physics inside the mixed compression air intake has been carried out with and without air jets at design Mach number of 2.2. RANS equations were solved with k-? turbulence model by using commercially available software ANSYS. The scope of this research is to improve the flow field inside the air intake and efficiency of supersonic air intake by implementing air jets on the ramp surface. An array of air jets containing two, four and five air jet holes respectively have been made on the ramp surface perpendicular to the flow with equal spacing between them. The injection pressure through air jet has kept constant for all the cases. Flow Distortion and Total pressure recovery were selected to measure the performance of air intake. All the simulations have been performed at a back-pressure ratio of 6. The results obtained suggest that implementation of proper spacing between air jets can improve the performance of air intake due to the mixing of vortices generated by air jets with free stream flow. It is revealed that an array of air jets containing four holes on ramp surface works best and helps in controlling the shock induced separation.

This content is only available via PDF.
You do not currently have access to this content.