Abstract

This paper develops equations for velocity, pressure drop, and wall shear stress in the entrance or development region of a circular pipe. The model quantifies the velocity and wall shear stress contributions to the entrance region pressure drop and illustrates how data is used to determine the numerical values of parameters needed to complete the model. It assumes a Newtonian fluid, laminar flow, steady state, and a constant mass density fluid. The fluid axial velocity profile at the entrance region inlet is modeled by an equation that is close to a flat axial velocity and drops off to zero as the radius approaches the wall. The fluid velocity at the entrance region exit is modeled as the axial, fully developed, laminar flow parabolic velocity profile. The inlet velocity profile is multiplied by a decaying function F(x) that is unity at the entrance region inlet and decreases to zero at the entrance region exit. The exit velocity profile is multiplied by a growing function G(x) that is zero at the entrance region inlet and increases to unity at the entrance region exit. The pressure drop through the entrance region was expressed in terms of the wall viscous friction and the change in axial momentum of the fluid. Two mathematical models for F(x) and G(x) are presented. One is more advantageous when pressure drop data and a few centerline velocity data points are available and the second is more advantageous when only velocity data is available.

This content is only available via PDF.
You do not currently have access to this content.