Abstract

At present, pumped-storage power technology is the only available and effective way for the load balancing and energy storage in the grid network scale. During the frequent switch back and forth conditions, there are severe pressure pulsation and cavitation in pump-turbines. However, their generation mechanism has not been determined yet. This work contributes to the numerical simulation of the transient behaviors in a prototype pump-turbine during the load rejection process with special emphasis on cavitation effect. In this study, the two-dimensional dynamic remesh and variable speed slide mesh methodologies were employed to perform the simulation of the transient single-phase flow and cavitation flow in a pump-turbine. The simulation results of single-phase flow and cavitation flow were both consistent with the experimental data except in local regions based on the experimental validation of prototype tests. However, the numerical results considering cavitation effects have a better behavior than those of single-phase flow in the predictions of pressure pulsation and rotational speed. Then, the cavitation flow simulation results were analyzed deeply, especially in pressure pulsation and cavitation flow field. Analysis revealed that three typical complex frequency components of pressure were captured in the cavitation flow, which significantly affect the axial hydraulic thrust on the runner. And it is validated that they are primarily induced by the cavity collapse near the trailing edges of the runner blades in reverse pump mode and the interaction between cavitation and vortex rope in draft-tube in turbine mode.

References

References
1.
Zhang
,
Y. N.
, and
Wu
,
Y. L.
,
2017
, “
A Review of Rotating Stall in Reversible Pump Turbine
,”
Proc. Inst. Mech. Eng., Part C
,
231
(
7
), pp.
1181
1204
.10.1177/0954406216640579
2.
Yang
,
J.
,
Pavesi
,
G.
,
Liu
,
X. H.
,
Tian
,
X.
, and
Liu
,
J.
,
2018
, “
Unsteady Flow Characteristics Regarding Hump Instability in the First Stage of a Multistage Pump-Turbine in Pump Mode
,”
Renewable Energy
,
127
(
2018
), pp.
377
385
.10.1016/j.renene.2018.04.069
3.
Trivedi
,
C.
,
2017
, “
Investigations of Compressible Turbulent Flow in a High-Head Francis Turbine
,”
ASME J. Fluids Eng.
,
140
(
1
), p.
011101
.10.1115/1.4037500
4.
Zuo
,
Z. G.
,
Liu
,
S. H.
,
Sun
,
Y. K.
, and
Wu
,
Y. L.
,
2015
, “
Pressure Fluctuations in the Vaneless Space of High-Head Pump-Turbines—A Review
,”
Renewable Sustainable Energy Rev.
,
41
(
2015
), pp.
965
974
.10.1016/j.rser.2014.09.011
5.
Li
,
D.
,
Wang
,
H.
,
Qin
,
Y.
,
Wei
,
X.
, and
Qin
,
D.
,
2018
, “
Numerical Simulation of Hysteresis Characteristic in the Hump Region of a Pump-Turbine Model
,”
Renewable Energy
,
115
(
2018
), pp.
433
447
.10.1016/j.renene.2017.08.081
6.
Li
,
D. Y.
,
Wang
,
H. J.
,
Qin
,
Y. L.
,
Han
,
L.
,
Wei
,
X. Z.
, and
Qin
,
D. Q.
,
2017
, “
Entropy Production Analysis of Hysteresis Characteristic of a Pump-Turbine Model
,”
Energy Convers. Manage.
,
149
(
2017
), pp.
175
191
.10.1016/j.enconman.2017.07.024
7.
Zuo
,
Z. G.
,
Fan
,
H. G.
,
Liu
,
S. H.
, and
Wu
,
Y. L.
,
2016
, “
S-Shaped Characteristics on the Performance Curves of Pump-Turbines in Turbine Mode—A Review
,”
Renewable Sustainable Energy Rev.
,
60
(
2016
), pp.
836
851
.10.1016/j.rser.2015.12.312
8.
Wang
,
C.
, and
Yang
,
J. D.
,
2015
, “
Water Hammer Simulation Using Explicit—Implicit Coupling Methods
,”
J. Hydraul. Eng.
,
141
(
4
), p.
04014086
.10.1061/(ASCE)HY.1943-7900.0000979
9.
Li
,
D.
,
Fu
,
X.
,
Zuo
,
Z.
,
Wang
,
H.
,
Li
,
Z.
,
Liu
,
S.
, and
Wei
,
X.
,
2019
, “
Investigation Methods for Analysis of Transient Phenomena Concerning Design and Operation of Hydraulic-Machine Systems—A Review
,”
Renewable Sustainable Energy Rev.
,
101
(
2019
), pp.
26
46
.10.1016/j.rser.2018.10.023
10.
Zhou
,
D. Q.
,
Chen
,
H. X.
, and
Zhang
,
L. G.
,
2018
, “
Investigation of Pumped Storage Hydropower Power-Off Transient Process Using 3D Numerical Simulation Based on SP-VOF Hybrid Model
,”
Energies
,
11
(
4
), p.
1020
.10.3390/en11041020
11.
Yin
,
J. L.
,
Wang
,
D. Z.
,
Wang
,
L. Q.
,
Wu
,
Y. L.
, and
Wei
,
X. Z.
,
2012
, “
Effects of Water Compressibility on the Pressure Fluctuation Prediction in Pump Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
6
), p.
62030
.10.1088/1755-1315/15/6/062030
12.
Zhang
,
X.-X.
,
Cheng
,
Y.-G.
,
Yang
,
J.-D.
,
Xia
,
L.-S.
, and
Lai
,
X.
,
2014
, “
Simulation of the Load Rejection Transient Process of a Francis Turbine by Using a 1-D-3-D Coupling Approach
,”
J. Hydrodyn. Ser. B
,
26
(
5
), pp.
715
724
.10.1016/S1001-6058(14)60080-9
13.
Wang
,
C.
,
Nilsson
,
H.
,
Yang
,
J. D.
, and
Petit
,
O.
,
2017
, “
1D–3D Coupling for Hydraulic System Transient Simulations
,”
Comput. Phys. Commun.
,
210
(
2017
), pp.
1
9
.10.1016/j.cpc.2016.09.007
14.
Huang
,
W. D.
,
Fan
,
H. G.
, and
Chen
,
N. X.
,
2012
, “
Transient Simulation of Hydropower Station With Consideration of Three-Dimensional Unsteady Flow in Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
15
(
5
), p.
52003
.10.1088/1755-1315/15/5/052003
15.
Cherny
,
S.
,
Chirkov
,
D.
,
Bannikov
,
D.
,
Lapin
,
V.
, and
Skorospelov
,
V.
,
2010
, “
3D Numerical Simulation of Transient Processes in Hydraulic Turbines
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
12
(
1
), p.
12071
.10.1088/1755-1315/12/1/012071
16.
Li
,
Z. J.
,
Bi
,
H. L.
,
Wang
,
Z. W.
, and
Yao
,
Z.
,
2016
, “
Three-Dimensional Simulation of Unsteady Flows in a Pump-Turbine During Start-Up Transient Up to Speed No-Load Condition in Generating Mode
,”
Proc. Inst. Mech. Eng., Part A
,
230
(
6
), pp.
570
585
.10.1177/0957650916646911
17.
Fu
,
X.
,
Li
,
D.
,
Wang
,
H.
,
Zhang
,
G.
,
Li
,
Z.
, and
Wei
,
X.
,
2018
, “
Influence of the Clearance Flow on the Load Rejection Process in a Pump-Turbine
,”
Renewable Energy
,
127
(
2018
), pp.
310
321
.10.1016/j.renene.2018.04.054
18.
Trivedi
,
C.
,
Cervantes
,
M. J.
, and
Dahlhaug
,
O. G.
,
2016
, “
Numerical Techniques Applied to Hydraulic Turbines: A Perspective Review
,”
ASME Appl. Mech. Rev.
,
68
(
1
), p.
010802
.10.1115/1.4032681
19.
Trivedi
,
C.
, and
Cervantes
,
M. J.
,
2017
, “
Fluid-Structure Interactions in Francis Turbines: A Perspective Review
,”
Renewable Sustainable Energy Rev.
,
68
(
2017
), pp.
87
101
.10.1016/j.rser.2016.09.121
20.
Trivedi
,
C.
,
Cervantes
,
M.
, and
Dahlhaug
,
O.
,
2016
, “
Experimental and Numerical Studies of a High-Head Francis Turbine: A Review of the Francis-99 Test Case
,”
Energies
,
9
(
2
), p.
74
.10.3390/en9020074
21.
Fu
,
X.
,
Li
,
D.
,
Wang
,
H.
,
Zhang
,
G.
,
Li
,
Z.
,
Wei
,
X.
, and
Qin
,
D.
,
2018
, “
Energy Analysis in a Pump-Turbine During the Load Rejection Process
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101107
.10.1115/1.4040038
22.
Trivedi
,
C.
, and
Dahlhaug
,
O. G.
,
2018
, “
Interaction Between Trailing Edge Wake and Vortex Rings in a Francis Turbine at Runaway Condition: Compressible Large Eddy Simulation
,”
Phys. Fluids
,
30
(
7
), p.
075101
.10.1063/1.5030867
23.
Avdyushenko
,
A. Y.
,
Cherny
,
S. G.
,
Chirkov
,
D. V.
,
Skorospelov
,
V. A.
, and
Turuk
,
P. A.
,
2013
, “
Numerical Simulation of Transient Processes in Hydroturbines
,”
Thermophys. Aeromech.
,
20
(
5
), pp.
577
593
.10.1134/S0869864313050059
24.
Panov
,
L. V.
,
Chirkov
,
D. V.
,
Cherny
,
S. G.
, and
Pylev
,
I. M.
,
2014
, “
Numerical Simulation of Pulsation Processes in Hydraulic Turbine Based on 3D Model of Cavitating Flow
,”
Thermophys. Aeromech.
,
21
(
1
), pp.
31
43
.10.1134/S0869864314010041
25.
Ssinger
,
P. M.
,
Conrad
,
P.
, and
Jung
,
A.
,
2014
, “
Transient Two-Phase CFD Simulation of Overload Pressure Pulsation in a Prototype Sized Francis Turbine Considering the Waterway Dynamics
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
22
(
3
), p.
32033
.10.1088/1755-1315/22/3/032033
26.
Ssinger
,
P. M.
, and
Jung
,
A.
,
2016
, “
Transient Two-Phase CFD Simulation of Overload Operating Conditions and Load Rejection in a Prototype Sized Francis Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(
9
), p.
92003
.10.1088/1755-1315/49/9/092003
27.
Li
,
Z.
,
Bi
,
H.
,
Karney
,
B.
,
Wang
,
Z.
, and
Yao
,
Z.
,
2017
, “
Three-Dimensional Transient Simulation of a Prototype Pump-Turbine During Normal Turbine Shutdown
,”
J. Hydraul. Res.
,
55
(
4
), pp.
520
537
.10.1080/00221686.2016.1276105
28.
ANSYS,
2012
, “
Ansys Fluent 14.5 Theory Guide
,”
ANSYS
,
Canonsburg, PA
.
29.
Zwart
,
P. J.
,
Gerber
,
A. G.
, and
Belamri
,
2004
, “
A Two-Phase Flow Model for Predicting Cavitation Dynamics
,” Fifth International Conference on Multiphase Flow, Yokohama, Japan, May 30–June 3, Paper No.
152
.https://www.researchgate.net/publication/306205415_A_two-phase_flow_model_for_predicting_cavitation_dynamics
30.
Xavier
,
E.
,
Rafel
,
R.
, and
Víctor
,
2018
, “
Sensitivity Analysis of Zwart-Gerber-Belamri Model Parameters on the Numerical Simulation of Francis Runner Cavitation
,”
International Symposium on Cavitation
, Baltimore, MD, May 14–16, pp. 911–914.https://www.researchgate.net/publication/330601769_Sensitivity_Analysis_of_Zwart-Gerber-Belamri_Model_Parameters_on_the_Numerical_Simulation_of_Francis_Runner_Cavitation
31.
Cheng
,
H.-y.
,
Long
,
X.-P.
,
Ji
,
B.
,
Liu
,
Q.
, and
Bai
,
X.-R.
,
2018
, “
3-D Lagrangian-Based Investigations of the Time-Dependent Cloud Cavitating Flows Around a Clark-Y Hydrofoil With Special Emphasis on Shedding Process Analysis
,”
J. Hydrodyn.
,
30
(
1
), pp.
122
753
.10.1007/s42241-018-0013-x
32.
Zhang
,
S.
,
Li
,
X.
,
Hu
,
B.
,
Liu
,
Y.
, and
Zhu
,
Z.
,
2019
, “
Numerical Investigation of Attached Cavitating Flow in Thermo-Sensitive Fluid With Special Emphasis on Thermal Effect and Shedding Dynamics
,”
Int. J. Hydrogen Energy
,
44
(
5
), pp.
3170
3184
.10.1016/j.ijhydene.2018.11.224
33.
IEC,
1999
, “
Hydraulic Turbines, Storage Pumps and Pump-Turbines: Model Acceptance Tests
,” International Electrotechnical Commission, Geneva, Switzerland, Standard No. 60193.
34.
Xia
,
L. S.
,
Cheng
,
Y. G.
,
You
,
J. F.
, and
Jiang
,
Y. Q.
,
2016
, “
CFD Analysis of the Runaway Stability of a Model Pump-Turbine
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
49
(
4
), p.
42004
.10.1088/1755-1315/49/4/042004
35.
Coutier-Delgosha
,
O.
,
Fortes-Patella
,
R.
, and
Reboud
,
J. L.
,
2003
, “
Evaluation of the Turbulence Model Influence on the Numerical Simulations of Unsteady Cavitation
,”
ASME J. Fluids Eng.
,
125
(
1
), pp.
38
45
.10.1115/1.1524584
36.
Chirag
,
T.
,
Michel
,
J. C.
,
Gandhi
,
B. K.
, and
Dahlhaug
,
O. G.
,
2014
, “
Transient Pressure Measurements on a High Head Model Francis Turbine During Emergency Shutdown, Total Load Rejection, and Runaway
,”
ASME J. Fluids Eng.
,
136
(
12
), p.
121107
.10.1115/1.4027794
37.
Fu
,
X.
,
Li
,
D.
,
Wang
,
H.
,
Zhang
,
G.
,
Li
,
Z.
, and
Wei
,
X.
,
2018
, “
Dynamic Instability of a Pump-Turbine in Load Rejection Transient Process
,”
Sci. China Technol. Sci.
,
61
(
11
), pp.
1765
1775
.10.1007/s11431-017-9209-9
38.
Trivedi
,
C.
,
Cervantes
,
M.
, and
Gandhi
,
B.
,
2016
, “
Investigation of a High Head Francis Turbine at Runaway Operating Conditions
,”
Energies
,
9
(
3
), p.
149
.10.3390/en9030149
You do not currently have access to this content.