An optimization study based on computational fluid dynamics (CFD) in combination with Stratford's analytical separation criterion was developed for the design of piecewise conical contraction zones and nozzles. The risk of flow separation was formally covered by a newly introduced dimensionless separation number. The use of this separation number can be interpreted as an adaption of Stratford's separation criterion to piecewise conical nozzles. In the nozzle design optimization process, the risk of flow separation was reduced by minimizing the separation number. It was found that the flow-optimized piecewise conical nozzle did not correspond to a direct geometric approximation of an ideal polynomial profile. In fact, it was beneficial to reduce the flow deflection in the outlet region for a piecewise conical nozzle to increase the nozzle performance. In order to validate the novel design method, extensive tests for different nozzle designs were conducted by means of wind tunnel tests. The measured velocity profiles and wall pressure distributions agreed well with the CFD predictions.

References

References
1.
Hasselmann
,
K.
,
Reinker
,
F.
,
aus der Wiesche
,
S.
, and
Kenig
,
E. Y.
,
2015
, “
Numerical Optimization of a Piece-Wise Conical Contraction Zone of a High Pressure Wind Tunnel
,”
ASME
Paper No. AJK2015-15064.
2.
Barlow
,
J. B.
,
Rae
,
W. H.
, and
Pope
,
A.
,
1999
,
Low Speed Wind Tunnel Testing
,
3rd ed
,
Wiley-Interscience
,
New York
.
3.
Mehta
,
R. D.
, and
Bradshaw
,
P.
,
1979
, “
Design Rules for Small Low Speed Wind Tunnels
,”
Aeronaut. J.
,
83
(
827
), pp.
443
449
.
4.
Reinker
,
F.
,
Hasselmann
,
K.
,
aus der Wiesche
,
S.
, and
Kenig
,
E. Y.
,
2015
, “
Thermodynamics and Fluid Mechanics of a Closed Blade Cascade Wind Tunnel for Organic Vapors
,”
ASME J. Eng. Gas Turbines Power
,
138
(
5
), p.
052601
.
5.
Hasselmann
,
K.
,
Reinker
,
F.
,
aus der Wiesche
,
S.
,
Kenig
,
E. Y.
,
Dubberke
,
F.
, and
Vrabec
,
J.
,
2014
, “
Performance Predictions of Axial Turbines for Organic Rankine Cycle (ORC) Application Based on Measurements of the Flow Through Two-Dimensional Cascades of Blades
,”
ASME
Paper No. POWER2014-32098.
6.
Morel
,
T.
,
1975
, “
Comprehensive Design of Axisymmetric Wind Tunnel Contractions
,”
ASME J. Fluids Eng.
,
97
(
2
), pp.
225
233
.
7.
Stratford
,
B. S.
,
1959
, “
The Prediction of Separation of the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
5
(
1
), pp.
1
16
.
8.
Bell
,
J. H.
, and
Metha
,
R. D.
,
1988
, “
Contraction Design for Small Low-Speed Wind Tunnels
,” Stanford University, Stanford, CA, Technical Report No.
NASA-CR-177488
.https://ntrs.nasa.gov/search.jsp?R=19890004382
9.
Albayrak
,
K.
,
1991
, “
Design of a Low-Speed Axisymmetric Wind Tunnel Contraction
,”
J. Wind Eng. Ind. Aerodyn.
,
37
(
1
), pp.
79
86
.
10.
Ramaseshan
,
S.
, and
Ramaswamy
,
M. A.
,
2002
, “
A Rational Method to Choose Optimum Design for Two-Dimensional Contractions
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
544
546
.
11.
Sargison
,
J. E.
,
Walker
,
G. J.
, and
Rossi
,
R.
,
2004
, “
Design and Calibration of a Wind Tunnel With a Two Dimensional Contraction
,”
15th Australasian Fluid Mechanics Conference
(AFMC), Sydney, Australia, Dec. 13–17, Paper No.
AFMC00183
.https://people.eng.unimelb.edu.au/imarusic/proceedings/15/AFMC00183.pdf
12.
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2012
, “
Optimized Laminar Axisymmetrical Nozzle Design Using a Numerically Validated Thwaites Method
,”
ASME J. Fluids Eng.
,
134
(
10
), p.
101203
.
13.
Brassard
,
D.
, and
Ferchichi
,
M.
,
2005
, “
Transformation of a Polynomial for a Contraction Wall Profile
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
183
185
.
14.
Doolan
,
C. J.
,
2007
, “
Numerical Evaluation of Contemporary Low-Speed Wind Tunnel Contraction Designs
,”
ASME J. Fluids Eng.
,
129
(
9
), pp.
1241
1244
.
15.
Schlichting
,
H.
, and
Gersten
,
K.
,
2005
,
Boundary-Layer Theory
,
10th ed.
,
Springer
,
New York
.
16.
Cebeci
,
T.
,
Mosinskis
,
G. J.
, and
Smith
,
A. M. O.
,
1972
, “
Calculation of Separation Points in Incompressible Turbulent Flows
,”
J. Aircr.
,
9
(
9
), pp.
618
624
.
17.
Tulapurkara
,
E. G.
, and
Bhalla
,
V. V. K.
,
1988
, “
Experimental Investigation of Morel's Method for Wind Tunnel Contractions
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
45
47
.
18.
Milne-Thompson
,
L. M.
,
1996
,
Theoretical Hydrodynamics
,
5th ed.
,
Dover Publications
,
Mineola, NY
.
19.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor and Francis
,
Boca Raton, FL
.
20.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
405
413
.
21.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Rech. Aerosp.
,
1
, pp.
5
21
.
22.
Zanoun
,
E.-S.
,
2018
, “
Flow Characteristics in Low-Speed Wind Tunnel Contractions: Simulation and Testing
,”
Alexandria Eng. J.
,
57
(
4
), pp.
2265
2277
.
23.
Aus der Wiesche
,
S.
, and
Helcig
,
C.
,
2016
,
Convective Heat Transfer From Rotating Disks Subjected to Streams of Air
,
Springer
,
New York
.
24.
Fachbereich Prozessmesstechnik und Strukturanalyse,
1983
, “
Netzmessungen in Strömungsquerschnitten; Bestimmung Des Gasstromes in Leitungen Mit Kreis-, Kreisring- Oder Rechteckquerschnitt
,” Verein Deutscher Ingenieure, Düsseldorf, Germany, Standard No.
VDI
/VDE 2640 Blatt 3.
25.
Profos
,
P.
, and
Pfeifer
,
T.
,
1994
,
Handbuch Der Industriellen Meßtechnik
,
R. Oldenbourg Verlag
,
Müchen, Deutschland
.
You do not currently have access to this content.