Prediction of the operational envelope (OE-limited range of gas and liquid velocities) for liquid carry-over is essential for the optimized performance of gas-liquid cylindrical cyclone (GLCC©) compact separators. This study presents for the first time the operational envelop for three-phase gas-oil-water flow incorporating pressure and level control configurations. A series of experiments were conducted to evaluate the performance of a 3 in. diameter GLCC in terms of OE for liquid carry-over. Experiments were carried out at different watercuts ranging from 0% to 100% utilizing water and two different types of mineral oils namely: light oil and heavy oil with specific gravities of 0.859 and 0.937, respectively. The liquid level was controlled at 6 in. below the GLCC inlet for all the experimental flow conditions. The experimental results indicate that OE for liquid carry-over for three-phase flow is very sensitive to watercut. As the watercut reduces, the OE for liquid carry-over reduces monotonically. Also, the OE for heavy oil (indicated by higher viscosity) reduces as compared to light oil. The superficial gas velocity required to create an annular mist flow in the upper part of the GLCC increases with the increase of watercut and viscosity.

References

References
1.
Kolla
,
S. S.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2016
, “
Structural Integrity Analysis of GLCC© Separator Inlet
,”
ASME
Paper No. IMECE2016-67863
.
2.
Shoham
,
O.
, and
Kouba
,
G.
,
1998
, “
State-of-the-Art of Gas/Liquid Cylindrical Cyclone Compact Separator Technology
,”
J. Pet. Technol.
,
50
(
7
), pp.
54
62
.
3.
Kouba
,
G. E.
,
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2006
, “
Review of the State-of-the-Art Gas-Liquid Cylindrical Cyclone (GLCC©) Technology—Field Applications
,”
SPE International Oil and Gas Conference and Exhibition in China
, Beijing, China, Dec. 5–7, SPE Paper No.
SPE-104256-MS
.
4.
Mohan
,
R. S.
, and
Shoham
,
O.
,
1999
, “
Technologies Under Development: Design and Development of Gas-Liquid Cylindrical Cyclone Compact Separators for Three-Phase Flow
,”
Oil and Gas Conference-Technology Options for Producers' Survival, Co-Sponsored by DOE and PTTC
, Dallas, TX, June 28–30.
5.
Kouba
,
G. E.
,
2002
, “
A Slug Damper for Compact Separators
,”
ASME
Paper No. ETCE2002/PROD-29116
.
6.
Bodunrin
,
A. A.
,
Igbokwe
,
C. H.
,
Cunningham
,
L. D.
, and
Kouba
,
G. E.
,
1997
, “
A New Approach to Supplying Gas for Gas Lift Operations Using Gas-Liquid Cylindrical Cyclone (GLCC)
,”
Nigerian Association of Petroleum Explorationists (NAPE)
, Lagos, Nigeria, Paper No. SPE48991.
7.
Molina
,
R.
,
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G. E.
,
2008
, “
Wet Gas Separation in Gas-Liquid Cylindrical Cyclone (GLCC©) Separator
,”
ASME J. Energy Resour. Technol.
,
130
(4), p.
042701
.
8.
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Fang
,
Z.
,
Xiao
,
J. J.
,
Al-Muraikhi
,
A.
, and
Al-Dawas
,
S.
,
2006
, “
Compact Multiphase Inline Water Separation (IWS) System—A New Approach for Produced Water Management and Production Enhancement
,”
SPE International Oil and Gas Conference and Exhibition
, Beijing, China, Dec. 5–7, SPE Paper No.
SPE-104252-MS
.
9.
Marrelli
,
J. D.
,
Rubel
,
M. T.
,
Yocum
,
B. T.
,
Dunbar
,
D. N.
,
Tallett
,
M. R.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Brahmantyo
,
A. K.
,
Montolalu
,
D.
,
Wahyudi
,
D.
, and
Solomon
,
K.
,
2006
, “
Methods for Optimal Matching Separation and Metering Facilities for Performance, Cost and Size: Practical Examples From Duri Area 10 Expansion
,”
ETCE/OMAE Conference of ASME Petroleum Division
, New Orleans, LA, Feb. 14–17, Paper No. ER-10165.
10.
Campen
,
C. H.
,
Caetano
,
E. F.
,
Capela
,
C. A.
, and
da Fonsea
,
R.
, Jr
,
2006
, “
Gas-Liquid Cylindrical Cyclones (GLCC) Assuring Liquid Presence on a Sub-Sea Multiphase Pumping System
,”
5th North American Conference on Multiphase Technology
, Banff, Canada, May 31–June 2.
11.
Pereyra
,
E.
,
Gomez
,
L.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G.
,
2009
, “
Transient Mechanistic Model for Slug Damper/Gas-Liquid Cylindrical Cyclone (GLCC©) Compact Separator System
,”
ASME
Paper No. OMAE2009-80193.
12.
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
,
Marrelli
,
J.
, and
Kouba
,
G.
,
2000
, “
Control System Simulators for Gas-Liquid Cylindrical Cyclone Separators
,”
ASME J. Energy Resour. Technol.
,
122
(
4
), pp.
177
184
.
13.
Wang
,
S.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Marrelli
,
J. D.
, and
Kouba
,
G. E.
,
2000
, “
Performance Improvement of Gas-Liquid Cylindrical Cyclone Separators Using Integrated Liquid Level and Pressure Control Systems
,”
ASME
Paper No. ETCE00-ER-035
.
14.
Chirinos
,
W.
,
Gomez
,
L.
,
Wang
,
S.
,
Mohan
,
R.
,
Shoham
,
O.
, and
Kouba
,
G.
,
2000
, “
Liquid Carry-Over in Gas-Liquid Cylindrical Cyclone (GLCC) Compact Separators
,”
SPE J.
,
5
(
3
), pp.
259
267
.
15.
Sampath
,
V.
,
Mohan
,
R. S.
,
Wang
,
S.
,
Gomez
,
L. E.
,
Shoham
,
O.
, and
Marrelli
,
J. D.
,
2009
, “
Intelligent Control of Compact Multiphase Separation System (CMSS©)—Part 1: Modeling and Simulation
,”
ASME
Paper No. FEDSM2009-78422
.
16.
Sampath
,
V.
,
Mohan
,
R. S.
,
Wang
,
S.
,
Gomez
,
L. E.
,
Shoham
,
O.
, and
Marrelli
,
J. D.
,
2009
, “
Intelligent Control of Compact Multiphase Separation System (CMSS©)—Part II: Experimental Investigation
,”
ASME
Paper No. FEDSM2009-78423
.
17.
Wang
,
S.
,
Gomez
,
L. E.
,
Mohan
,
R. S.
,
Shoham
,
O.
,
Kouba
,
G. E.
, and
Marrelli
,
J. D.
,
2010
, “
The State-on-the-Art of Gas-Liquid Cylindrical Cyclone Control Technology: From Laboratory to Field
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
032701
.
18.
Kolla
,
S. S.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2017
, “
Computational Fluid Dynamics Study on the Effect of Inlet Modifications of Gas-Liquid Cylindrical Cyclone (GLCC©) Compact Separators
,”
ASME
Paper No. FEDSM2017-69413
.
19.
Kolla
,
S. S.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2017
, “
Fluid-Structure Interaction Study of GLCC© Inlet Modifications
,”
ASME
Paper No. FEDSM2017-69412.
20.
Gomez
,
L.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2004
, “
Swirling Gas-Liquid Two-Phase Flow- Experiment and Modeling—Part 1: Swirling Flow Field
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
935
942
.
21.
Gomez
,
L.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2004
, “
Swirling Gas-Liquid Two-Phase Flow- Experiment and Modeling Part 2: Turbulent Quantities and Core Stability
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
943
959
.
22.
Kolla
,
S. S.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2018
, “
Gas Carry-Under in GLCC for Separated and Recombined Outlet Configurations
,”
ASME
Paper No. FEDSM2018-83406
.
23.
Kolla
,
S. S.
,
Mohan
,
R. S.
, and
Shoham
,
O.
,
2018
, “
Effect of Liquid Level on Gas Carry-Under in GLCC Compact Separators
,”
ASME
Paper No. FEDSM2018-83301
.
25.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2006
,
Theory and Design for Mechanical Measurements
,
4th ed.
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.