To characterize the microflow over a larger range of Knudsen numbers, an improved kinetic equation considering the volume diffusion effect for nonideal gases was presented based on Klimontovich's kinetic equation and Enskog equation-based lattice Boltzmann Bhatnagar–Gross–Krook (LBGK) model. Then, with the modified effective viscosity and the second-order slip boundary condition, a series of numerical simulations of gas flows with different mean Knudsen numbers were carried out based on the proposed model. Compared with the solutions of Navier–Stokes equations, Navier–Stokes equations with different slip boundary conditions, bivelocity hydrodynetics, and experimental data, we found that the present model can be valid up to a Knudsen number of 30. It is also shown that the present model furnishes a better solution in the transitional flow regime (0.1 < Kn < 10). The results not only illustrate that the present model could offer a satisfactory solution to a wider range of mean Knudsen number, but also show the importance of the compressibility and surface-dominated effects in micro gas flows. The improved model provides a promising tool for handling the micro gas flows with complex geometries and boundaries.

References

References
1.
Schaaf
,
S. A.
, and
Chambre
,
P. L.
,
1961
,
Flow of Rarefied Gases
,
Princeton University Press
,
Princeton, NJ
.
2.
Piekos
,
E. S.
, and
Breuer
,
S.
,
1995
, “
DSMC Modeling of Micromechanical Devices
,”
AIAA
Paper No. 1995-2089.
3.
Sreekanth
,
A. K.
,
1969
, “
Slip Flow Through Long Circular Tubes
,”
Sixth International Symposium on Rarefied Gas Dynamics
, Cambridge, MA, July 22–26, pp.
667–680
.
4.
Kandaswamy
,
S.
,
Subbarao
,
P. M. V.
, and
Kale
,
S. R.
,
2017
, “
Experimental and Numerical Studies on Gas Flow Through Silicon Microchannels
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
0812051
.
5.
Bird
,
G.
,
1994
,
Molecular Gas Dynamics and the Direct Simulation of Gas Flows
,
Clarenton Press
,
Oxford, UK
.
6.
Tokumasu
,
T.
, and
Matsumoto
,
Y.
,
1999
, “
Dynamic Molecular Collision (DMC) model for Rarefied Gas Flow Simulations by the DSMC Method
,”
Phys. Fluids
,
11
(
7
), pp.
1907
1920
.
7.
Xue
,
H.
, and
Chen
,
S.
,
2003
, “
DSMC Simulation of Microscale Backward-Facing Step Flow
,”
Microscale Thermophys. Eng.
,
7
(
1
), pp.
69
86
.
8.
Shah
,
N.
,
Gavasane
,
A.
,
Agrawal
,
A.
, and
Bhandarkar
,
U.
,
2017
, “
Comparison of Various Pressure Based Boundary Conditions for Three Dimensional Subsonic DSMC Simulation
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031205
.
9.
Darbandi
,
M.
,
Sabouri
,
M.
,
Darbandi
,
M.
,
Sabouri
,
M.
,
Darbandi
,
M.
, and
Sabouri
,
M.
,
2018
, “
Quantifying the Direct Influence of Diffusive Mass Transfer in Rarefied Gas Mixing Simulations
,”
ASME J. Fluids Eng.
,
140
(
3
), p.
031207
.
10.
Rapaport
,
D. C.
,
2004
,
The Art of Molecular Dynamics Simulation
,
Cambridge University Press
,
Cambridge, UK
.
11.
Klimontovich
,
Y. L.
,
1992
, “
On the Need for and the Possibility of a Unified Description of Kinetic and Hydrodynamic Processes
,”
Theor. Math. Phys.
,
92
(
2
), pp.
909
921
.
12.
Klimontovich
,
Y. L.
,
1993
, “
From the Hamiltonian Mechanics to a Continuous Media. Dissipative Structures. Criteria of Self-Organization
,”
Theor. Math. Phys.
,
96
(
3
), pp.
1035
1056
.
13.
Luo
,
L. S.
,
1998
, “
Unified Theory of Lattice Boltzmann Models for Nonideal Gases
,”
Phys. Rev. Lett.
,
81
(
8
), pp.
1618
1621
.
14.
Shi
,
Y.
,
Zhao
,
T. S.
, and
Guo
,
Z. L.
,
2007
, “
Lattice Boltzmann Simulation of Dense Gas Flows in Microchannels
,”
Phys. Rev. E
,
76
(
1 Pt. 2
), p.
0167071
.
15.
Brenner
,
H.
,
2005
, “
Kinematics of Volume Transport
,”
Phys. A Stat. Mech. Its Appl.
,
349
(
1
), pp.
11
59
.
16.
Brenner
,
H.
,
2011
, “
Phoresis in Fluids
,”
Phys. Rev. E
,
84
(
6 Pt. 2
), p.
0663171
.
17.
Brenner
,
H.
,
2012
, “
Fluid Mechanics in Fluids at Rest
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
86
(
2
), p.
0163071
.
18.
Lv
,
Q.
,
Liu
,
X.
,
Wang
,
E.
, and
Wang
,
S.
,
2013
, “
Analytical Solution to Predicting Gaseous Mass Flow Rates of Microchannels in a Wide Range of Knudsen Numbers
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
88
(
1
), p.
0130071
.
19.
Dadzie
,
S. K.
, and
Brenner
,
H.
,
2012
, “
Predicting Enhanced Mass Flow Rates in Gas Microchannels Using Nonkinetic Models
,”
Phys. Rev. E
,
86
, p.
0363181
.
20.
Dadzie
,
S. K.
, and
Reese
,
J. M.
,
2012
, “
Analysis of the Thermomechanical Inconsistency of Some Extended Hydrodynamic Models at High Knudsen Number
,”
Phys. Rev. E
,
85
, p.
0412021
.
21.
Elizarova
,
T. G.
,
2009
,
Quasi-Gas Dynamic Equations
,
Springer
, Berlin.
22.
Fathi
,
E.
,
Tinni
,
A.
, and
Akkutlu
,
I. Y.
,
2012
, “
Correction to Klinkenberg Slip Theory for Gas Glow in Nano-Capillaries
,”
Int. J. Coal Geol.
,
103
, pp.
51
59
.
23.
Fathi
,
E.
, and
Akkutlu
,
I. Y.
,
2013
, “
Lattice Boltzmann Method for Simulation of Shale Gas Transport in Kerogen
,”
SPE J.
,
18
(
1
), pp.
27
37
.
24.
Zhang
,
X. L.
,
Xiao
,
L. Z.
,
Shan
,
X. W.
, and
Guo
,
L.
,
2014
, “
Lattice Boltzmann Simulation of Shale Gas Transport in Organic Nano-Pores
,”
Sci. Rep.
,
4
, pp.
48431
48436
.
25.
Ren
,
J.
,
Guo
,
P.
,
Guo
,
Z.
, and
Wang
,
Z.
,
2015
, “
A Lattice Boltzmann Model for Simulating Gas Flow in Kerogen Pores
,”
Transp. Porous Media
,
106
(
2
), pp.
285
301
.
26.
Shen
,
C.
,
Tian
,
D. B.
,
Xie
,
C.
, and
Fan
,
J.
,
2004
, “
Examination of the LBM in Simulation of Microchannel Flow in Transitional Regime
,”
Microscale Thermophys. Eng.
,
8
(
4
), pp.
423
432
.
27.
Homayoon
,
A.
,
Isfahani
,
A. H. M.
,
Shirani
,
E.
, and
Ashrafizadeh
,
M.
, 2011, “
A Novel Modified Lattice Boltzmann Method for Simulation of Gas Flows in Wide Range of Knudsen Number
,”
Int. J. Heat Mass Transfer
,
38
(6), pp. 827–832.
28.
Neumann
,
P.
, and
Rohrmann
,
T.
,
2012
, “
Lattice Boltzmann Simulations in the Slip and Transition Flow Regime With the Peano Framework
,”
Open J. Fluid Dyn.
,
3
, pp.
101
110
.
29.
Kalarakis
,
A.
,
Michalis
,
V.
,
Skouras
,
E.
, and
Burganos
,
V. N.
,
2012
, “
Mesoscopic Simulation of Rarefied Flow in Narrow Channels and Porous Media
,”
Transp. Porous Media
,
94
(
1
), pp.
385
398
.
30.
Zhao
,
Y. L.
, and
Wang
,
Z. M.
,
2019
, “
Prediction of Apparent Permeability of Porous Media Based on a Modified Lattice Boltzmann Method
,”
J. Pet. Sci. Eng.
,
174
, pp.
1261
1268
.
31.
Ewart
,
T.
,
Perrier
,
P.
,
Graur
,
I. A.
, and
Méolans
,
J. G.
,
2007
, “
Mass Flow Rate Measurements in a Microchannel, From Hydrodynamic to Near Free Molecular Regime
,”
J. Fluid Mech.
,
584
, pp.
337
356
.
32.
Chapman
,
S.
, and
Cowling
,
T. G.
,
1970
, “
The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity
,”
Thermal Conduction and Diffusion in Gases
,
Cambridge University Press
,
Cambridge, UK
.
33.
Dadzie
,
S. K.
,
2013
, “
A Thermo-Mechanically Consistent Burnett Regime Continuum Flow Equation Without Chapman–Enskog Expansion
,”
J. Fluid Mech.
,
716
, p. R6.
34.
Dadzie
,
S. K.
,
Reese
,
J. M.
, and
McInnes
,
C. R.
,
2006
, “
A Volume-Based Description of Gas Flows With Localised Mass-Density Variations
,”
Phys. Fluid Dyn.
,
2
, pp.
1
28
.https://pdfs.semanticscholar.org/338e/d93f3618c50932622c39194964b5fe42678e.pdf
35.
Dadzie
,
S. K.
,
Reese
,
J. M.
, and
McInnes
,
C. R.
,
2008
, “
A Continuum Model of Gas Flows With Localized Density Variations
,”
Phys. A: Stat. Mech. Its Appl.
,
387
(
24
), pp.
6079
6094
.
36.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases—I: Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.
37.
Shan
,
X.
, and
Chen
,
H.
,
1993
, “
Lattice Boltzmann Model for Simulating Flows With Multiple Phases and Components
,”
Phys. Rev. E
,
47
(
3
), pp.
1815
1819
.
38.
Shan
,
X.
, and
Doolen
,
G. D.
,
1995
, “
Multicomponent Lattice-Boltzmann Model With Interparticle Interaction
,”
J. Stat. Phys.
,
81
(
1–2
), pp.
379
393
.
39.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1999
, “
A Model for Flows in Channels, Pipes, and Ducts at Micro and Nano Scales
,”
Microscale Thermo. Phys. Eng.
,
3
, pp.
43
77
.
40.
Michalis
,
V. K.
,
Kalarakis
,
A. N.
,
Skouras
,
E. D.
, and
Burganos
,
V. N.
,
2010
, “
Rarefaction Effects on Gas Viscosity in the Knudsen Transition Regime
,”
Microfluid Nanofluid
,
9
(
4–5
), pp.
847
853
.
41.
Succi
,
S.
,
2002
, “
Mesoscopic Modeling of Slip Motion at Fluid-Solid Interfaces With Heterogeneous Catalysis
,”
Phys. Rev. Lett.
,
89
, p.
0645021
.
42.
Li
,
Q.
,
He
,
Y. L.
,
Tang
,
G. H.
, and
Tao
,
W. Q.
,
2011
, “
Lattice Boltzmann Modeling of Microchannel Flows in the Transition Flow Regime
,”
Microfluid. Nanofluid.
,
10
(
3
), pp.
607
618
.
43.
Maxwell
,
J. C.
,
1879
, “
On Stresses in Rarified Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
,
170
, pp.
231
256
.
44.
Deissler
,
R. G.
,
1964
, “
An Analysis of Second-Order Slip Flow and Temperature-Jump Boundary Conditions for Rarefied Gases
,”
Int. J. Heat Mass Transfer
,
7
(
6
), pp.
681
694
.
45.
Cercignani
,
C.
,
1990
,
Mathematical Models in Kinetic Theory
,
Plenum
,
New York
.
46.
Ohwada
,
T.
,
Sone
,
Y.
, and
Aoki
,
K.
,
1989
, “
Numerical Analysis of the Poiseuille and Thermal Transpiration Flows Between Two Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids A
,
1
(
12
), pp.
2042
2049
.
You do not currently have access to this content.