In this paper, a deterministic stress decomposition is applied over the numerical three-dimensional flow solution available for a single volute centrifugal pump. The numerical model has proven in previous publications its robustness to obtain the impeller to volute-tongue flow interaction, and it is now used as starting point for the current research. The main objective has been oriented toward a detailed analysis of the lack of uniformity in the flow that the volute tongue promotes on the blade-to-blade axisymmetric pattern. Through this analysis, the fluctuation field may be retrieved and main interaction sources have been pinpointed. The results obtained with the deterministic analysis become of paramount interest to understand the different flow features found in a typical centrifugal pump as a function of the flow rate. Moreover, this postprocessing tool provides an economic and easy procedure for designers to compare the different deterministic terms, also giving relevant information on the unresolved turbulence intensity scales. Complementarily, a way to model the turbulent effects in a systematic way is also presented, comparing their impact on the performance with respect to deterministic sources in a useful framework, that may be applied for similar kinds of pumps.

References

References
1.
Binder
,
R. C.
,
Lafayette
,
I. N. D.
, and
Knapp
,
R. T.
,
1936
, “
Experimental Determination of the Flow Characteristics in the Volutes of Centrifugal Pumps
,”
Trans. ASME.
,
58
(
4
), pp.
649
663
.https://authors.library.caltech.edu/48703/
2.
Bowerman
,
R. D.
, and
Acosta
,
A. J.
,
1957
, “
Effect of the Volute on Performance of a Centrifugal Pump Impeller
,”
Trans. ASME
,
79
, pp.
1057
1069
.https://authors.library.caltech.edu/48247/
3.
Adkins
,
D. R.
, and
Brennen
,
C. E.
,
1988
, “
Analysis of Hydrodynamic Radial Forces on Centrifugal Pump Impellers
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
20
28
.
4.
Miner
,
S. M.
,
Flack
,
R. D.
, and
Allaire
,
P. E.
,
1992
, “
Two Dimensional Flow Analysis of a Laboratory Centrifugal Pump
,”
ASME J. Fluids Eng.
,
114
(
2
), pp.
333
339
.
5.
Greitzer
,
E. M.
,
1981
, “
The Stability of Pumping Systems—The 1980 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
103
(
2
), pp.
193
242
.
6.
Lakshminarayana
,
B.
,
1991
, “
An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery—The 1990 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
315
352
.
7.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts ETI
, Concepts ETI, White River Junction, VT.
8.
Tsukamoto, H.
,
Uno, M.
,
Hamafuku, H.
, and
Okamura. T.
, 1995, “
Pressure Fluctuation Downstream of a Diffuser Pump Impeller
,” The 2nd Joint ASME/JSME Fluids Engineering Conference, Forum of Unsteady Flow, FED-Vol. 216, pp. 133–138.
9.
Kaupert
,
K. A.
, and
Staubli
,
T.
,
1999
, “
The Unsteady Pressure Field in a High Specific Speed Centrifugal Pump Impeller—Part I: Influence of the Volute
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
621
626
.
10.
Dong
,
R.
,
Chu
,
S.
, and
Katz
,
J.
,
1997
, “
Effect of Modification to Tongue and Impeller Geometry on Unsteady Flow, Pressure Fluctuations and Noise in a Centrifugal Pump
,”
ASME J. Turbomach.
,
119
(
3
), pp.
506
515
.
11.
Wuibaut
,
G.
,
Bois
,
G.
,
Dupont
,
P.
,
Caignaert
,
G.
, and
Stanilas
,
M.
,
2002
, “
PIV Measurements in the Impeller and Vaneless Diffuser of a Radial Flow Pump in Design and Off-Design Operating Conditions
,”
ASME J. Fluids Eng.
,
124
(
3
), pp.
791
797
.
12.
Croba
,
D.
, and
Kueny
,
J. L.
,
1996
, “
Numerical Calculation of 2D, Unsteady Flow in Centrifugal Pumps: Impeller and Volute Interaction
,”
Int. J. Numer. Methods Fluids
,
22
(
6
), pp.
467
481
.
13.
Shi
,
F.
, and
Tsukamoto
,
H.
,
2001
, “
Numerical Study of Pressure Fluctuations Caused by Impeller-Diffuser Interaction in a Diffuser Pump Stage
,”
ASME J. Fluids Eng.
,
123
(
3
), pp.
466
474
.
14.
Goto
,
A.
, and
Zangeneh
,
M.
,
2002
, “
Hydrodynamic Design of Pump Diffuser Using Inverse Design Method and CFD
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
319
328
.
15.
González
,
J.
,
Fernández
,
J.
,
Blanco
,
E.
, and
Santolaria
,
C.
,
2002
, “
Numerical Simulation of the Dynamic Effects Due to Impeller-Volute Interaction in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
348
355
.
16.
Wu
,
D.
,
Yan
,
P.
,
Chen
,
X.
,
Wu
,
P.
, and
Yang
,
S.
,
2015
, “
Effect of Trailing-Edge Modification of a Mixed-Flow Pump
,”
ASME J. Fluids Eng.
,
137
(
10
), p.
101205
.
17.
Adamczyk
,
J. J.
,
1985
, “
Model Equation for Simulating Flows in Multistage Turbomachinery
,”
ASME
Paper No. 85-GT-226.
18.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.
19.
Van Zante
,
D. E.
,
Adamczyk
,
J. J.
,
Strazisar
,
A. J.
, and
Okiishi
,
T. H.
,
2002
, “
Wake Recovery Performance Benefit in a High-speed Axial Flow Compressor
,”
ASME J. Turbomach.
,
124
(
2
), pp.
275
284
.
20.
Fernández Oro
,
J. M.
,
González
,
J.
,
Argüelles
,
K. M.
, and
Guerras
,
F. I.
,
2011
, “
Decomposition of Deterministic Unsteadiness in a Centrifugal Turbomachine: Non-Linear Interactions Between the Impeller Flow and Volute for a Double Suction Pump
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
011103
.
21.
González
,
J.
,
Parrondo
,
J.
,
Santolaria
,
C.
, and
Blanco
,
E.
,
2006
, “
Steady and Unsteady Radial Forces for a Centrifugal Pump With Impeller to Tongue Gap Variation
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
454
462
.
22.
Parrondo
,
J. L.
,
González
,
J.
, and
Fernández
,
J.
,
2002
, “
The Effect of the Operating Point on the Pressure Fluctuations at the Blade Passage Frequency in the Volute of a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
124
, pp.
784
790
.
23.
González
,
J.
, and
Santolaria
,
C.
,
2006
, “
Unsteady Flow Structure and Global Variables in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
937
946
.
24.
Barrio
,
R.
,
Blanco
,
E.
,
Parrondo
,
J.
,
González
,
J.
, and
Fernández
,
J.
,
2008
, “
The Effect of Impeller Cutback on the Fluid-Dynamic Pulsations and Load at the Blade-Passing Frequency in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
130
(
11
), p.
111102
.
25.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
,
2002
, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
,
18
(
6
), pp.
1139
1152
.
26.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
27.
Trébinjac
,
I.
,
Charbonnier
,
D.
, and
Leboeuf
,
F.
,
2005
, “
Unsteady Rotor-Stator Interaction in High Speed Compressor and Turbine Stages
,”
J. Therm. Sci.
,
14
(
4
), pp.
289
297
.
28.
Arnaud
,
D.
,
Ottavy
,
X.
, and
Vouillarmet
,
A.
,
2004
, “
Experimental Investigation of the Rotor-Stator Interactions Within a High-Speed, Multi-Stage, Axial Compressor—Part 2: Modal Analysis of the Interactions
,”
ASME
Paper No. GT2004-53778.
29.
Rouchon
,
N.
,
Trébinjac
,
I.
, and
Billonnet
,
G.
,
2006
, “
An Extraction of the Dominant Rotor-Stator Interaction Modes by the Use of Proper Orthogonal Decomposition (POD)
,”
J. Therm. Sci.
,
15
(
2
), pp.
109
114
.
30.
Danaila
,
S.
, and
Niculescu
,
M. L.
,
2010
, “
Proper Orthogonal Decomposition Analysis for Unsteady Rotor-Stator Interaction in a Low Pressure Centrifugal Compressor
,”
WSEAS Trans. Fluid Mech.
,
5
(
3
), pp.
226
235
.http://www.worldses.org/journals/fluid/fluid-2010.htm
31.
Meneveau
,
C.
, and
Katz
,
J.
,
2002
, “
A Deterministic Stress Model for Rotor-Stator Interactions in Simulations of Average-Passage Flow
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
550
554
.
32.
Leboeuf
,
F.
,
2002
, “
Unsteady Flow Analysis in Transonic Turbine and Compressor Stages
,” VKI Lecture Series 2002-01 on Recent Developments in Numerical Methods for Turbomachinery Flows, Rhode-Saint-Genese, Belgium.
33.
Barrio
,
R.
,
Parrondo
,
J.
, and
Blanco
,
E.
,
2010
, “
Numerical Analysis of the Unsteady Flow in the Near-Tongue Region in a Volute-Type Centrifugal Pump for Different Operating Conditions
,”
Comput. Fluids
,
39
, pp.
859
870
.
34.
Tucker
,
P. G.
,
2011
,
Unsteady Computational Fluid Dynamics in Aeronautics
,
Springer
,
Berlin
.
35.
Leschziner
,
M.
,
2016
,
Statistical Turbulence Modelling for Fluid Dynamics—Demystified
,
Imperial College Press
,
London
.
36.
Moore
,
J.
,
Moore
,
J. G.
, and
Johnson
,
M. W.
,
1977
, “On Three-Dimensional Flow in Centrifugal Impellers,”
Cambridge University Engineering Department/Aeronautical Research Council
, Cambridge, UK, CP No. 1384.
37.
Moore
,
J.
, and
Moore
,
J. G.
,
1981
, “
Calculations of Three-Dimensional, Viscous Flow and Wake Development in a Centrifugal Impeller
,”
ASME J. Eng. Power
,
103
(
2
), pp.
367
372
.
38.
Lakshminarayana
,
B.
, and
Horlock
,
J. H.
,
1973
, “
Generalised Expressions for Secondary Vorticity Using Intrinsic Coordinates
,”
J. Fluid Mech.
,
59
(
1
), pp.
97
115
.
You do not currently have access to this content.