The investigation focused on the conversions of flow structures with a change in angle of attack (AOA) for a flexible cantilever wing, which experienced a self-excited vibration. Stereoscopic particle imaging velocimetry (Stereo-PIV) was utilized to measure the velocity field in the wing-tip region as AOA varied from 0 deg to 12 deg. At the Reynolds number (Re) of 3 × 104, instability waves shedding from the wing were amplified as they propagated and developed into Karman Vortex Street in the far downstream region at low AOAs (AOA = 4 deg and 6 deg). As AOA increased to 8 deg with the wing model was still steady, the Karman Vortex Street no longer existed. The wing started to vibrate at AOA = 10 deg owing to the self-excited vibration, and the Karman Vortex Street appeared again. The inception location of the Karman Vortex Street moved further upstream than in the cases at AOA = 4 deg and 6 deg. A new vortex structure, secondary vortex-pairs, appears outside the main wing-tip vortex (WTV).

References

References
1.
McCroskey
,
W. J.
,
1977
, “
Some Current Research in Unsteady Fluid Dynamics
,”
ASME J. Fluids Eng.
,
99
(
1
), pp.
8
39
.
2.
Ericsson
,
L. E.
,
1995
, “
Dynamic Airfoil Flow Separation and Reattachment
,”
J. Aircr.
,
32
(
6
), pp.
1191
1197
.
3.
Fagley
,
C.
,
Seidel
,
J.
, and
McLaughlin
,
T.
,
2016
, “
Cyber-Physical Flexible Wing for Aeroelastic Investigations of Stall and Classical Flutter
,”
ASME J. Fluids Struct.
,
67
, pp.
34
47
.
4.
Fagley
,
C.
,
Broadbent
,
D.
,
Seidel
,
J.
, and
McLaughlin
,
T.
,
2017
, “
Stall Flutter Prediction and Experimental Verification Using a Cyber-Physical Wing
,”
AIAA
Paper No. 2017-1416.
5.
Nelson
,
C. T.
, and
Rediniotis
,
O. K.
,
2005
, “
An Active Flap Deployment System for Blade–Disturbance Interaction Alleviation
,”
ASME J. Fluids Eng.
,
126
(
6
), pp.
1006
1014
.
6.
Lee
,
T.
, and
Su
,
Y. Y.
,
2015
, “
Surface Pressures Developed on an Airfoil Undergoing Heaving and Pitching Motion
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051105
.
7.
Dewey
,
P. A.
,
Carriou
,
A.
, and
Smits
,
A. J.
,
2012
, “
On the Relationship Between Efficiency and Wake Structure of a Batoid-Inspired Oscillating Fin
,”
J. Fluid Mech.
,
691
, pp.
245
266
.
8.
Cleaver
,
D. J.
,
Calderon
,
D. E.
,
Wang
,
Z.
, and
Gursul
,
I.
,
2016
, “
Lift Enhancement Through Flexibility of Plunging Wings at Low Reynolds Numbers
,”
ASME J. Fluids Struct.
,
64
, pp.
27
45
.
9.
Bölsc
,
A.
, and
Fransson
,
T. H.
,
1986
, “
Aeroelasticity in Turbomachines Comparison of Theoretical and Experimental Cascade Results
,” Communication du LTAT—École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, Report No. 13.
10.
Kang
,
C. K.
,
Aono
,
H.
,
Cesnik
,
C. E. S.
, and
Shyy
,
W.
,
2011
, “
Effects of Flexibility on the Aerodynamic Performance of Flapping Wings
,”
J. Fluid Mech.
,
689
, pp.
32
74
.
11.
Razak
,
N. A.
,
Andrianne
,
T.
, and
Dimitriadis
,
G.
,
2011
, “
Flutter and Stall Flutter of Rectangular Wing in a Wind Tunnel
,”
AIAA J.
,
49
(
10
), pp.
2258
2271
.
12.
Takeda
,
M.
, and
Mutoh
,
K.
,
1983
, “
Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes
,”
Appl. Opt.
,
22
(
24
), pp.
3977
3982
.
13.
Sciacchitano
,
A.
,
Wieneke
,
B.
, and
Scarano
,
F.
,
2013
, “
PIV Uncertainty Quantification by Image Matching
,”
Meas. Sci. Technol.
,
24
(
4
), p.
045302
.
14.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.
15.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.
16.
Pan
,
C.
,
Wang
,
J. J.
, and
He
,
G. S.
,
2012
, “
Experimental Investigation of Wake-Induced Bypass Transition Control by Surface Roughness
,”
Chin. Phys. Lett.
,
29
(
10
), p.
104704
.
17.
Huang
,
R. F.
, and
Lin
,
C. L.
,
1995
, “
Vortex Shedding and Shear-Layer Instability of Wing at Low-Reynolds Numbers
,”
AIAA J.
,
33
(
8
), pp.
1398
1403
.
18.
Payne
,
F. M.
,
Ng
,
T. T.
, and
Nelson
,
R. C.
,
1987
, “
Experimental Study of the Velocity Field on a Delta Wing
,”
AIAA
Paper No. 1987-1231.
19.
Washburn
,
A. E.
, and
Visser
,
K. D.
,
1994
, “
Evolution of Vortical Structures in the Shear Layer of Delta Wings
,”
AIAA
Paper No. 1994-2317
.
20.
Mitchell
,
A. M.
,
Morton
,
S. A.
,
Forsythe
,
J. R.
, and
Cummings
,
R. M.
,
2006
, “
Analysis of Delta-Wing Vortical Substructures Using Detached-Eddy Simulation
,”
AIAA J.
,
44
(
5
), pp.
964
972
.
21.
Garmann
,
D. J.
, and
Visbal
,
M. R.
,
2017
, “
Investigation of the Unsteady Tip Vortex Structure on a NACA0012 Wing at Fixed Incidence
,”
AIAA
Paper No. 2017-1002.
You do not currently have access to this content.