The laminar three-dimensional flow in curved ducts has been analyzed for an incompressible viscous fluid. The mathematical model is formulated using three-dimensional parabolized Navier-Stokes equations. The equations are generalized using two indices which permit the choice of Cartesian or cylindrical coordinate systems and straight or curved ducts. The solutions are obtained numerically using an ADI method for a number of duct geometries and flow parameters. The study presents detailed results for developing laminar flow in rectangular curved ducts; also, the effect of longitudinal curvature on secondary flow is fully analyzed. An investigation is made of the occurrence of Dean’s instability and, for curved square ducts, it is found to first appear at Dean number ≃ 143.

This content is only available via PDF.
You do not currently have access to this content.