A relatively simple and rapid method for predicting the three-dimensional flow effects in axial flow turbomachinery was investigated. Although the two-dimensional cascade is a satisfactory approximation for the design and analysis of some types of turbo-machines, the flow through devices, such as propeller pumps and inducers, may deviate significantly. A three-dimensional lifting surface theory was used to predict the potential flow around blades, represented by line vortices and sources, spanning an annulus. A rotor was designed, built, and tested (with air as the test medium) for comparison with the theory. Static pressure distributions on a rotating blade were measured. The effect of blade dihedral on these pressures was also measured. Deviation from cascade predictions caused by the three-dimensional flow effects is found to be appreciable for propeller pumps. No theory was developed, but variation of the experimental blade pressure distributions caused by dihedral was found to be considerable.

This content is only available via PDF.
You do not currently have access to this content.