The results of an investigation of thermodynamic effects are presented. Distributions of temperature and pressure in a developed cavity were measured for zero- and quarter-caliber ogives. A semiempirical entrainment theory was developed to correlate the measured temperature depression, ΔT, in the cavity. This theory correlates ΔTmax expressed in dimensionless form as the Jakob number in terms of the dimensionless numbers of Nusselt, Reynolds, Froude, and Pe´cle´t, and dimensionless cavity length, L/D. The results show that in general ΔT increases with L/D and temperature and the cavitation number based on measured cavity pressure is a function of L/D for a given model contour, independent of the thermodynamic effect.

This content is only available via PDF.
You do not currently have access to this content.