A general method of calculating two-dimensional (plane and axisymmetric) mixing of a compressible jet in variable-area ducts has been developed. The method incorporates finite-difference approximations to the conservation equations, and is applicable to a wide range of Mach number, mass flow ratio, and initial conditions. The model was based on mixing length approximations deduced from boundary-layer and free-jet mixing for the upstream portion of the flow, and on a new mixing length distribution for the downstream zone which is entirely occupied by shear flow. The method has been tested and found satisfactory with existing data on boundary layer, constant-diameter duct entrance flow, constant-pressure jet mixing, and jet mixing in variable-area ducts. Part II of the paper describes tests of the method with new data from an experimental ejector study.

This content is only available via PDF.
You do not currently have access to this content.