The role played by turbopump cavitation in the POGO instability of liquid rockets motivates the present study on the dynamic response of streams of cavitating bubbles to imposed pressure fluctuations. Both quasistatic and more general linearized dynamic analyses are made of the perturbations to a cavitating flow through a region of reduced pressure in which the bubbles first grow and then collapse. The results when coupled with typical bubble number density distribution functions yield compliances which compare favorably with the existing measurements. Since the fluids involved are frequently cryogenic, a careful examination was made of the thermal effects both on the mean flow and on the perturbations. As a result the discrepancy between theory and experiment for particular engines could be qualitatively ascribed to reductions in the compliance caused either by these thermal effects or by relatively high reduced frequencies.

This content is only available via PDF.
You do not currently have access to this content.