An experimental investigation has been made of a swirling jet having a moderate ratio of swirling to axial momentum. Measurements showed that the flow achieved a self-similarity for the mean velocities rather quickly while the normal turbulent intensities reached a self-similar state after a longer period of jet development. Conservation arguments were used to predict streamwise decay rates for the mean quantities. The analysis showed that the maximum axial and swirling velocity components should vary asymptotically as (x − x0)−1 and (x − x0)−2, respectively. The experimental results confirmed this satisfactorily. The minimum static pressure was predicted to vary at a rate proportional to (x − x0)−4. Measurements indicated, however, that the relation was closer to (x − x0)−2. Better agreement with the data was achieved when the analytical expression was adjusted for the effect of the turbulence terms. The entrainment rate and angle of spread for the swirling jet were found to be nearly twice that of the non-swirling free jet.

This content is only available via PDF.
You do not currently have access to this content.