Presently, the only accurate solutions for the step response of a semi-infinite, circular fluid transmission line result from involved, time consuming, numerical finite series or integration techniques [1, 2, 3]. None of these solutions is practically suitable for either a rapid manual prediction for an arbitrary fluid line (liquid or gas), or for extension of the semi-infinite line results to the more meaningful problem of a finite line with arbitrary inputs. In the frequency domain (sinusoidal signals), a complete, verified solution exists [1, 4, 5] and theoretically could be transformed into the time domain. This was the scheme used by Brown and Nelson for liquid lines [2], but it required the numerical techniques referred to above and, in their own words, was a “very complex and tricky business.” However, simpler solutions for most operating regimes also exist in the frequency domain [6, 7]. These simple frequency domain solutions were transformed into the time domain and provided the basis for a simple solution for the step response.

This content is only available via PDF.
You do not currently have access to this content.