Experimental results are presented for the radial distributions of pressure and peripheral velocity for the turbulent flow of water in two closed curved channels of rectangular cross section and large depth-to-width ratio. The traverses were taken at the equatorial section of the channel and sufficiently far around the curve for the effect of curvature on the mean motion to be fully established. The two channels employed had widely differing mean-radius-to-width ratios n. The data obtained for a wide range of flow rates in the channel with a larger n indicated that Reynolds similarity existed between the flows in this channel. These data are compared with the pressure and velocity profiles predicted by potential flow theory and with a semiempirical logarithmic velocity distribution. Results obtained for the channel with smaller n showed that at above a certain Reynolds number an anomaly occurred in the flow, manifesting itself as an unstable “belt” of faster moving fluid, which moved outward from the inner wall as the Reynolds number was increased. This effect, considered to be the consequence of upstream stall, was accompanied by an adverse longitudinal-pressure gradient at the inner wall of the channel. It appeared to be eliminated by the insertion of an upstream splitter vane.

This content is only available via PDF.
You do not currently have access to this content.