The effects of lead addition in alloy steel upon the metal-cutting process were explored over a wide range of conditions. In particular, a range of cutting speeds (from 50 to 800 fpm) and workpiece hardness (from 230 to 450 Bhn) were investigated on one work-piece material (4340) using principally a carbide (C-6) cutting tool. Orthogonal (two-dimensional) data was taken to describe the metal-cutting process, and tool-life data were obtained by running a typical production tool to failure at the various cutting conditions. Several mechanisms to explain experimental results, including lead acting as a lubricant, are discussed.

This content is only available via PDF.
You do not currently have access to this content.