It is shown that a simple shock tube is capable of producing appreciable steady-flow rates through a short duct element, such as an orifice, a valve, or a screen. The flow upstream and downstream of the test element and, therefore, also the losses caused by the test element, can be calculated from known initial conditions in the shock tube and pressure measurements at one point upstream of the element. Experiments to determine the discharge coefficient of a sharp-edged orifice are described as an illustration of the method. The results are in good agreement with available steady-flow data.

This content is only available via PDF.
You do not currently have access to this content.