The leakage flow through labyrinth seals in turbomachinery has been the subject of increasing concern as refinements and advances in design are made. Accurate knowledge of seal leakage is necessary in at least three areas of design: (a) Estimating the effect of seal leakage on performance; (b) regulating the leakage flow required for cooling purposes; (c) determining the thrust-bearing load which is a function of the pressure drop through the seal. This paper is concerned primarily with the fluid-flow aspect of gas leakage through labyrinth seals of the types commonly used in gas and steam turbines. This includes staggered and unstaggered seals of the axial type, which are most commonly used in turbomachinery. The attention to fluid-flow considerations does not imply that material compatibility and operating problems of expansion, deformation, and rub-in are unimportant. In fact, these mechanical considerations may overrule the fluid-flow considerations. For the foregoing reasons, it is desirable to be able to predict seal leakage flows, and thus this aspect of seal design has been singled out for consideration here.

This content is only available via PDF.
You do not currently have access to this content.