Abstract

Components created using additive manufacturing (AM) processes such as laser powder bed fusion (L-PBF) may exhibit a type of printing error referred to as a “layer shift error.” In this type of error, the reference location of the printing pattern shifts for each layer of material deposited. If an AM-printed component includes an internal cooling passage, the features or roughness of one wall of the passage may become anticorrelated to the roughness on the opposing wall of the passage. In this study, a rough surface from the internal passage of a L-PBF coupon was used to create two base surfaces representing flow through: (1) a passage oriented orthogonally to the printing direction and (2) a passage oriented at 45-deg to the printing direction. Each base roughness pattern was then shifted in the streamwise direction to produce either the nearest minimum correlation or the nearest maximum correlation and applied to the opposing side of the internal passage. Bulk friction factor measurements and particle-tracking velocimetry measurements of the flow were obtained for each minimum and maximum roughness correlation condition. The particle tracking results indicate that the flow shows the expected differences in flow patterns between the correlated surface conditions for the orthogonal surface. The resulting friction factors indicated statistically significant differences in the measured bulk friction between the opposing surface correlation conditions; however, the overall results suggest that correlation of roughness on opposing walls is not a significant design consideration regarding frictional losses for AM internal cooling passages.

References

1.
Altland
,
S.
,
Zhu
,
X.
,
McClain
,
S.
,
Kunz
,
R.
, and
Yang
,
X.
,
2022
, “
Flow in Additively Manufactured Super-Rough Channels
,”
Flow
,
2
, p.
E19
.10.1017/flo.2022.13
2.
Altland
,
S.
,
Xu
,
H. H. A.
,
Yang
,
X. I. A.
, and
Kunz
,
R.
,
2022
, “
Modeling of Cube Array Roughness: RANS, Large Eddy Simulation, and Direct Numerical Simulation
,”
ASME J. Fluids Eng.
,
144
(
6
), p.
061106
.10.1115/1.4053611
3.
Garg
,
H.
,
Wang
,
L.
,
Sahut
,
G.
, and
Fureby
,
C.
,
2023
, “
Large Eddy Simulations of Fully Developed Turbulent Flows Over Additively Manufactured Rough Surfaces
,”
Phys. Fluids
,
35
(
4
), p.
045145
.10.1063/5.0143863
4.
Berhane
,
A.
, and
Longley
,
J.
,
2024
, “
Impact of the Wall-Paralell Length Scale of Roughness on the Development of Tubulent Boundary Layers in Turbines
,”
ASME J. Turbomach.
, 147(2), p. 021011.10.1115/1.4066579
5.
Bons
,
J.
,
2002
, “
St and cf Augmentation for Real Turbine Roughness With Elevated Freestream Turbulence
,”
ASME J. Turbomach.
,
124
(
4
), pp.
632
644
.10.1115/1.1505851
6.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.10.1115/1.4032168
7.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Tuneskog
,
E.
, and
Wang
,
L.
,
2024
, “
Roughness Related to Cooling Performance of Channels Made Through Additive Manufacturing
,”
ASME J. Turbomach.
,
146
(
5
), p.
051008
.10.1115/1.4064310
8.
Stimpson
,
C. K.
,
Snyder
,
J.
,
Thole
,
K.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.10.1115/1.4032167
9.
Stimpson
,
C.
,
Snyder
,
J.
,
Thole
,
K.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer in Additively Manufactured Channels
,”
ASME J. Turbomach
,
139
(
2
), p.
021003
.10.1115/1.4034555
10.
Stafford
,
G.
,
McClain
,
S.
,
Hanson
,
D.
,
Kunz
,
R.
, and
Thole
,
K.
,
2022
, “
Convection in Scaled Turbine Internal Cooling Passages With Additive Manufacturing Roughness
,”
ASME J. Turbomach.
,
144
(
4
), p.
041008
.10.1115/1.4052524
11.
McClain
,
S. T.
,
Hanson
,
D. R.
,
Emily
,
C.
,
Snyder
,
J. C.
,
Kunz
,
R. F.
, and
Thole
,
K. A.
,
2021
, “
Flow in a Simulated Turbine Blade Cooling Channel With Spatially Varying Roughness Caused by Additive Manufacturing Orientation
,”
ASME J. Turbomach.
,
143
(
7
), p.
071013
.10.1115/1.4050389
12.
Hanson
,
D.
,
McClain
,
S.
,
Snyder
,
J.
,
Kunz
,
R.
, and
Thole
,
K.
,
2019
, “
Flow in a Scaled Turbine Coolant Channel With Roughness Due to Additive Manufacturing
,”
ASME Paper No. GT2019-90931
.10.1115/GT2019-90931
13.
Boldt
,
R.
,
McClain
,
S.
,
Kunz
,
R.
, and
Xiang
,
Y.
,
2024
, “
Tomographic Flow Measurements Over Additively Manufactured Cooling Channel Roughness
,”
Exp. Fluids
,
65
(
4
), p.
58
.10.1007/s00348-024-03798-w
14.
Boldt
,
R.
,
McClain
,
S. T.
, and
Kunz
,
R. F.
,
2024
, “
Flow Through a Passage With Scaled Additive Manufacturing Roughness Representing Different Printing Orientations
,”
ASME J. Fluids Eng.
, 146(12), p.
121203
.10.1115/1.4065765
15.
Miozga
,
R.
, and
Kurek
,
M.
,
2021
, “
Effect of Print Orienatation Using DMLS Method on Strength of Materials
,”
EDP Sci.
,
338
, p.
01017
.10.1051/matecconf/202133801017
16.
Fotovvati
,
B.
,
Etesami
,
S. A.
, and
Asadi
,
E.
,
2019
, “
Process-Property-Geometry Correlations for Additively-Manufactured Ti–6Al–4V Sheets
,”
Mater. Sci. Eng.
,
760
, pp.
431
447
.10.1016/j.msea.2019.06.020
17.
Han
,
J.
,
2004
, “
Recent Studies in Turbine Blade Cooling
,”
Int. J. Rotating Mach.
,
10
(
6
), pp.
443
457
.10.1155/S1023621X04000442
18.
Han
,
J. C.
,
Park
,
J. S.
, and
Lei
,
C. K.
,
1985
, “
Heat Transfer Enhancement in Channel With Turbulence Promoters
,”
ASME J. Turbomach.
,
107
(
3
), pp.
628
635
. 10.1115/1.3239782
19.
Parsons
,
J.
,
Han
,
J.
, and
Zhang
,
Y.
,
1995
, “
Effect of Model Orientation and Wall Heating Condition on Local Heat Tranfer in a Rotating Two-Pass Square Channel With Rib Turbulators
,”
Int. J. Heat Mass Transfer
,
38
(
7
), pp.
1151
1159
.10.1016/0017-9310(94)00246-R
20.
Chandra
,
P. R.
,
Han
,
J. C.
, and
Lau
,
S. C.
,
1988
, “
Eddect of Rib Angle on Local Heat/Mass Transfer Distribution in a Two-Pass Rib Roughened Channel
,”
ASME J. Turbomach.
,
110
(
2
), pp.
233
241
.10.1115/1.3262186
21.
Tanda
,
G.
, and
Abram
,
R.
,
2009
, “
Forced Convection Heat Transfer in Channels With Rib Turbulators Inclined at 45 Deg
,”
ASME J. Turbomach.
,
131
(
2
), p.
021012
.10.1115/1.2987241
22.
Mayle
,
R. E.
,
1991
, “
Pressure Loss and Heat Transfer in Channels Roughened on Two Opposed Walls
,”
ASME J. Turbomach.
,
113
(
1
), pp.
60
66
.10.1115/1.2927738
23.
McClain
,
S.
,
2017
, “
Spanwise Form Extraction for Ice Roughness Measurents From Misaligned Airfoils or Tapered Wing
,”
AIAA
Paper No. 2017-3584.10.2514/6.2017-3584
24.
Mooney
,
B.
,
Kourousis
,
K. I.
, and
Raghavendra
,
A. R.
,
2019
, “
Plastic Anisotropy of Additively Manufactured Maraging Steel: Influence of the Build Orientation and Heat Treatments
,”
Additive Manuf.
,
25
, pp.
19
31
.10.1016/j.addma.2018.10.032
25.
Sigal
,
A.
, and
Danberg
,
J.
,
1990
, “
New Correlation of Roughness Density Effect on the Turbulent Boundary Layer
,”
AIAA J.
,
28
(
3
), pp.
554
556
.10.2514/3.10427
26.
Flack
,
K. A.
, and
Schultz
,
M. P.
,
2010
, “
Review of Hydraulic Roughness Scales in the Fully Rough Regime
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041203
.10.1115/1.4001492
27.
Bacci
,
T.
,
Picchi
,
A.
,
Castelli
,
N.
,
Facchini
,
B.
,
Morante
,
F.
, and
Innocenti
,
L.
,
2024
, “
Assessment of Additive Manufactured Micro-Channel Characteristics: Impact of Hydraulic Diameter Evaluation
,”
ASME J. Turbomach
., 147(3), p. 031009.10.1115/1.4066700
28.
Favero
,
G.
,
Bonesso
,
M.
,
Dima
,
R.
,
Pepato
,
A.
,
Zanini
,
F.
,
Carmignato
,
S.
, and
Mancin
,
S.
,
2024
, “
Effect of the Building Orientation on Additively Manufactured Copper Alloy: Hydraulic Performance of Different Surface Roughness Channels
,”
Int. J. Thermofluids
,
23
, p.
100790
.10.1016/j.ijft.2024.100790
29.
Coleman
,
H.
, and
Steele
,
W.
,
1999
,
Experimentation, Validation, and Uncertainty Analysis for Engineers, 2nd ed.
,
Wiley & Sons Inc
.,
New York
.
30.
Lei
,
Y.-C.
,
Tien
,
W.-H.
,
Duncan
,
J.
,
Paul
,
M.
,
Ponchaut
,
N.
,
Mouton
,
C.
,
Dabiri
,
D.
,
Rösgen
,
T.
, and
Hove
,
J.
,
2012
, “
A Vision-Based Hybrid Particle Tracking Velocimetry (PTV) Technique Using a Modified Cascade Correlation Peak-Finding Method
,”
Exp. Fluids
,
53
(
5
), pp.
1251
1268
.10.1007/s00348-012-1357-6
31.
Lai
,
W.
,
Pan
,
G.
,
Menon
,
R.
,
Troolin
,
D.
,
Graff
,
E.
,
Gharib
,
M.
, and
Pereira
,
F.
,
2008
, “
Volumetric Three-Component Velocimetry: A New Tool for 3d Flow Measurement
,”
14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
, July 7–10, pp.
1
12
.https://www.researchgate.net/publication/259671967_Volumetric_Three-Component_Velocimetry_a_New_Tool_for_3D_Flow_Measurement
32.
"
Wilson
,
B. M.
, and
Smith
,
B. L.
,
2013
, “
Uncertainty on PIV Mean and Fluctuating Velocity Due to Bias and Random Errors
,”
Meas. Sci. Technol.
,
24
(
3
), p.
035302
.10.1088/0957-0233/24/3/035302
33.
Hamed
,
A. M.
,
Gallary
,
R. M.
, and
McAtee
,
B. R.
,
2024
, “
Localized Blowing for Near-Wake Flow and Vortical Structure Control in Turbulent Boundary Layers Over Periodic Two-Dimensional Roughness
,”
ASME J. Fluids Eng.
,
146
(
3
), p.
034502
.10.1115/1.4064103
34.
TSI Incorporated
,
2019
,
Insight V3V 4G Softare for Volumetric 3-Component Velocimetry Flow Measurement Systems
,
Shoreview
, MN,
TSI Incorporated
.
35.
Haaland
,
S.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
36.
Fuchs, T., Hain, R., and Kahler, C. J.,
2016
, “
Uncertianty Quantification of Three-Dimensional Velocimetry Techniques for Small Measurement Depths
,”
Exp. Fluids
, 57, p. 73.10.1007/s00348-016-2161-5
37.
'
Eiamsa-Ard
,
S.
,
Thianpong
,
C.
, and
Eiamsa-Ard
,
P.
,
2010
, “
Turbulent Heat Transfer Enhancement by Counter/co-Swirling Flow in a Tube Fitted With Twin Twisted Tapes
,”
Exp. Therm. Fluid Sci.
,
34
(
1
), pp.
53
62
.10.1016/j.expthermflusci.2009.09.002
38.
Abdolbaqi
,
M.
,
Azmi
,
W.
,
Mamat
,
R.
,
Mohamed
,
N.
, and
Najafi
,
G.
,
2016
, “
Experimental Investigation of Turbulent Heat Transfer by Counter and co-Swirling Flow in a Flat Tube Fitted With Twin Twisted Tapes
,”
Int. Commun. Heat Mass Transfer
,
75
, pp.
295
302
.10.1016/j.icheatmasstransfer.2016.04.021
You do not currently have access to this content.