Abstract

The hydrodynamic behaviors of a droplet impacting a cylindrical surface were experimentally investigated, examining the effects of cylinder-to-droplet diameter ratio (d*), impact velocity (v0), contact angle (θ), and relative eccentric distance (e*). Temporal evolutions of droplet behavior in the circumferential and axial directions were captured using a high-speed camera. Results indicate that the spreading process can be categorized into four stages based on contact line movements: impact, spreading, oscillation, and stabilization. The rebound height after impact decreases progressively with decreasing d* and increasing Weber number (We). The maximum spreading length increases with droplet diameter and Weber number, while a lower contact angle also contributes to a greater maximum spreading length. For eccentric impacts, the effects of circumferential asymmetry and surface hydrophilicity on spreading become more pronounced with larger e*. Additionally, a novel correlation was developed to predict the maximum spreading lengths of the droplet in the circumferential and axial directions for central impacts.

References

1.
Yarin
,
A. L.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing…
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.10.1146/annurev.fluid.38.050304.092144
2.
Liang
,
G. T.
, and
Issam
,
M.
,
2017
, “
Review of Drop Impact on Heated Walls
,”
Int. J. Heat Mass Transfer
,
106
, pp.
103
126
.10.1016/j.ijheatmasstransfer.2016.10.031
3.
Liang
,
G. T.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling—Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.10.1016/j.ijheatmasstransfer.2017.06.029
4.
Liu
,
H.
,
Si
,
C.
,
Cai
,
C.
,
Zhao
,
C.
, and
Yin
,
H.
,
2021
, “
Experimental Investigation on Impact and Spreading Dynamics of a Single Ethanol–Water Droplet on a Heated Surface
,”
Chem. Eng. Sci.
,
229
, p.
116106
.10.1016/j.ces.2020.116106
5.
Mishchenko
,
L.
,
Hatton
,
B.
,
Bahadur
,
V.
,
Taylor
,
J. A.
,
Krupenkin
,
T.
, and
Aizenberg
,
J.
,
2010
, “
Design of Ice-Free Nanostructured Surfaces Based on Repulsion of Impacting Water Droplets
,”
ACS Nano
,
4
(
12
), pp.
7699
7707
.10.1021/nn102557p
6.
Chen
,
J. N.
,
Zhang
,
Z.
,
Ouyang
,
X. L.
, and
Jiang
,
P. X.
,
2016
, “
Dropwise Evaporative Cooling of Heated Surfaces With Various Wettability Characteristics Obtained by Nanostructure Modifications
,”
Nanoscale Res. Lett.
,
11
(
1
), p.
158
.10.1186/s11671-016-1361-5
7.
Chen
,
X.
,
Chen
,
J. N.
,
Ouyang
,
X. L.
,
Song
,
Y.
,
Xu
,
R. N.
, and
Jiang
,
P. X.
,
2017
, “
Water Droplet Spreading and Wicking on Nanostructured Surfaces
,”
Langmuir
,
33
(
27
), pp.
6701
6707
.10.1021/acs.langmuir.7b01223
8.
Zhang
,
Z.
,
Zhao
,
C. R.
,
Yang
,
X. T.
, and
Jiang
,
P. X.
,
2018
, “
Micrometer-Sized Droplet Impingement Dynamics on Flat and Micro-Structured Surfaces
,”
Ann. Nucl. Energy
,
112
, pp.
464
473
.10.1016/j.anucene.2017.10.025
9.
Marengo
,
M.
,
Antonini
,
C.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2011
, “
Drop Collisions With Simple and Complex Surfaces
,”
Curr. Opin. Colloid Interface Sci.
,
16
(
4
), pp.
292
302
.10.1016/j.cocis.2011.06.009
10.
Deng
,
T.
,
Varanasi
,
K. K.
,
Hsu
,
M.
,
Bhate
,
N.
,
Keimel
,
C.
,
Stein
,
J.
, and
Blohm
,
M.
,
2009
, “
Nonwetting of Impinging Droplets on Textured Surfaces
,”
Appl. Phys. Lett.
,
94
, p.
133109
.10.1063/1.3110054
11.
Jung
,
C. Y.
, and
Bhushan
,
B.
,
2008
, “
Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces
,”
Langmuir
,
24
(
12
), pp.
6262
6269
.10.1021/la8003504
12.
Maitra
,
T.
,
Maitra
,
T.
,
Antonini
,
C.
,
Tiwari
,
M. K.
,
Mularczyk
,
A.
,
Imeri
,
Z.
,
Schoch
,
P.
, and
Poulikakos
,
D.
,
2014
, “
Supercooled Water Drops Impacting Superhydrophobic Textures
,”
Langmuir
,
30
(
36
), pp.
10855
10861
.10.1021/la502675a
13.
Zhu
,
J. M.
,
Tu
,
C.
,
Lu
,
T.
,
Luo
,
Y.
,
Zhang
,
K.
, and
Chen
,
X.
,
2021
, “
Behavior of a Water Droplet Impacting a Thin Water Film
,”
Exp. Fluids
,
62
(
7
), p.
143
.10.1007/s00348-021-03245-0
14.
Motzkus
,
C.
,
Gensdarmes
,
F.
, and
Géhin
,
E.
,
2011
, “
Study of the Coalescence/Splash Threshold of Droplet Impact on Liquid Films and Its Relevance in Assessing Airborne Particle Release
,”
J. Colloid Interface Sci.
,
362
(
2
), pp.
540
552
.10.1016/j.jcis.2011.06.031
15.
Bakshi
,
S.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2007
, “
Investigations on the Impact of a Drop Onto a Small Spherical Target
,”
Phys. Fluids
,
19
(
3
), p.
032102
.10.1063/1.2716065
16.
Li
,
Y. P.
, and
Wang
,
H. R.
,
2011
, “
Three-Dimensional Direct Simulation of a Droplet Impacting Onto a Solid Sphere With Low-Impact Energy
,”
Can. J. Chem. Eng.
,
89
(
1
), pp.
83
91
.10.1002/CJCE.20399
17.
Mitra
,
S.
,
Sathe
,
M. J.
,
Doroodchi
,
E.
,
Utikar
,
R.
,
Shah
,
M. K.
,
Pareek
,
V.
,
Joshi
,
J. B.
, and
Evans
,
G. M.
,
2013
, “
Droplet Impact Dynamics on a Spherical Particle
,”
Chem. Eng. Sci.
,
100
, pp.
105
119
.10.1016/j.ces.2013.01.037
18.
Liang
,
G. T.
,
Guo
,
Y. L.
, and
Shen
,
S. Q.
,
2013
, “
Observation and Analysis of Drop Impact on Wetted Spherical Surfaces With Low Velocity
,”
Acta Phys. Sin.
,
62
(
18
), p.
184703
(in Chinese).10.7498/aps.62.184703
19.
Zhu
,
Y.
,
Liu
,
H. R.
,
Mu
,
K.
,
Gao
,
P.
,
Ding
,
H.
, and
Lu
,
X. Y.
,
2017
, “
Dynamics of Drop Impact Onto a Solid Sphere: Spreading and Retraction
,”
J. Fluid Mech.
,
824
, p.
R3
.10.1017/jfm.2017.388
20.
Banitabaei
,
S. A.
, and
Amirfazli
,
A.
,
2017
, “
Droplet Impact Onto a Solid Sphere: Effect of Wettability and Impact Velocity
,”
Phys. Fluids
,
29
(
6
), p.
062111
.10.1063/1.4990088
21.
Bordbar
,
A.
,
Taassob
,
A.
,
Khojasteh
,
D.
,
Marengo
,
M.
, and
Kamali
,
R.
,
2018
, “
Maximum Spreading and Rebound of a Droplet Impacting Onto a Spherical Surface at Low Weber Numbers
,”
Langmuir
,
34
(
17
), pp.
5149
5158
.10.1021/acs.langmuir.8b00625
22.
Ju
,
J.
,
Jin
,
Z.
,
Zhang
,
H.
,
Yang
,
Z.
, and
Zhang
,
J.
,
2018
, “
The Impact and Freezing Processes of a Water Droplet on Different Cold Spherical Surfaces
,”
Exp. Therm. Fluid Sci.
,
96
, pp.
430
440
.10.1016/j.expthermflusci.2018.03.037
23.
Liu
,
X.
,
Zhang
,
X.
, and
Min
,
J.
,
2019
, “
Maximum Spreading of Droplets Impacting Spherical Surfaces
,”
Phys. Fluids
,
31
(
9
), p.
092102
.10.1063/1.5117278
24.
Milacic
,
E.
,
Baltussen
,
M. W.
, and
Kuipers
,
J. M.
,
2019
, “
Direct Numerical Simulation Study of Droplet Spreading on Spherical Particles
,”
Powder Technol.
,
354
, pp.
11
18
.10.1016/j.powtec.2019.05.064
25.
Liu
,
Y.
,
Andrew
,
M.
,
Li
,
J.
,
Yeomans
,
J. M.
, and
Wang
,
Z.
,
2015
, “
Symmetry Breaking in Drop Bouncing on Curved Surfaces
,”
Nat. Commun.
,
6
(
1
), p.
10034
.10.1038/ncomms10034
26.
Chen
,
X. S.
,
Wang
,
J.
,
Lu
,
T.
,
Chen
,
X.
,
Shen
,
S. Q.
, and
Liu
,
B.
,
2022
, “
Three-Dimensional Film Thickness Distribution of Horizontal Tube Falling Film With Droplet and Sheet Flow
,”
Int. J. Multiphase Flow
,
148
, p.
103933
.10.1016/j.ijmultiphaseflow.2021.103933
27.
Killion
,
D. J.
, and
Garimella
,
S.
,
2003
, “
Gravity-Driven Flow of Liquid Films and Droplets in Horizontal Tube Banks
,”
Int. J. Refrig.
,
26
(
5
), pp.
516
526
.10.1016/S0140-7007(03)00009-4
28.
Zhang
,
H.
,
Ma
,
Y.
,
Hu
,
G.
, and
Liu
,
Q.
,
2020
, “
Droplet Impaction in Nuclear Installations and Safety Analysis: Phenomena, Findings and Approaches
,”
Nucl. Eng. Des.
,
366
, p.
110757
.10.1016/j.nucengdes.2020.110757
29.
Jin
,
Z.
,
Zhang
,
H.
, and
Yang
,
Z.
,
2017
, “
The Impact and Freezing Processes of a Water Droplet on Different Cold Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
113
, pp.
318
323
.10.1016/j.ijheatmasstransfer.2017.05.111
30.
Wang
,
Y.
,
2020
, “
Numerical Study of a Droplet Impact on Cylindrical Objects: Towards the Antiicing Property of Power Transmission Lines
,”
Appl. Surf. Sci.
,
516
, p.
146155
.10.1016/j.apsusc.2020.146155
31.
Liang
,
G. T.
,
Yang
,
Y.
,
Guo
,
Y. L.
,
Zhen
,
N.
, and
Shen
,
S. Q.
,
2014
, “
Rebound and Spreading During a Drop Impact on Wetted Cylinders
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
97
103
.10.1016/j.expthermflusci.2013.09.001
32.
Kim
,
S. G.
, and
Kim
,
W.
,
2016
, “
Droplet Impact on a Fiber
,”
Phys. Fluids
,
28
(
4
), p.
042001
.10.1063/1.4945103
33.
Fan
,
Y.
,
Wang
,
H.
,
Zhu
,
X.
,
Huang
,
G. Y.
,
Ding
,
Y. D.
, and
Liao
,
Q.
,
2016
, “
Effect of Curvature and Undercooling Degree of Surface on Behavior of Droplet Spreading
,”
CIESC J.
,
67
(
7
), pp.
2709
2717
(in Chinese).https://link.oversea.cnki.net/doi/10.11949/j.issn.0438-1157.20160224
34.
Liu
,
X.
,
Zhao
,
Y.
,
Chen
,
S.
,
Shen
,
S.
, and
Zhao
,
X.
,
2017
, “
Numerical Research on the Dynamic Characteristics of a Droplet Impacting a Hydrophobic Tube
,”
Phys. Fluids
,
29
(
6
), p.
062105
.10.1063/1.4986526
35.
Liu
,
X.
,
Wang
,
K.
,
Fang
,
Y. Q.
,
Chen
,
H.
, and
Shen
,
S.
,
2020
, “
Study of the Surface Wettability Effect on Dynamic Characteristics of Droplet Impacting a Tube With Different Curvature Ratios
,”
Exp. Therm. Fluid Sci.
,
115
, p.
110060
.10.1016/j.expthermflusci.2020.110060
36.
Luo
,
J.
,
Wu
,
S. Y.
,
Xiao
,
L.
, and
Chen
,
Z. L.
,
2021
, “
Parametric Influencing Mechanism and Control of Contact Time for Droplets Impacting on the Solid Surfaces
,”
Int. J. Mech. Sci.
,
197
, p.
106333
.10.1016/j.ijmecsci.2021.106333
37.
Luo
,
J.
,
Wu
,
S.
,
Xiao
,
L.
, and
Chen
,
Z. L.
,
2021
, “
The Maximum Spreading Lengths in Circumferential and Axial Directions When Droplets Impact on Cylindrical Surfaces
,”
Int. J. Multiphase Flow
,
143
, p.
103774
.10.1016/j.ijmultiphaseflow.2021.103774
38.
Zhang
,
L.
,
Wang
,
Y.
,
Gao
,
S.
,
Lin
,
D.
,
Yang
,
Y.
,
Wang
,
X.
, and
Lee
,
D.
,
2021
, “
Re-Touch Rebound Patterns and Contact Time for a Droplet Impacting a Superhydrophobic Cylinder
,”
J. Taiwan Inst. Chem. Eng.
,
126
, pp.
359
370
.10.1016/j.jtice.2021.07.012
39.
Wang
,
Y. L.
,
Wang
,
Y. X.
, and
Wang
,
S. R.
,
2020
, “
Droplet Impact on Cylindrical Surfaces: Effects of Surface Wettability, Initial Impact Velocity, and Cylinder Size
,”
J. Colloid Interface Sci.
,
578
, pp.
207
217
.10.1016/j.jcis.2020.06.004
40.
Dai
,
Z.
,
Zhang
,
Y.
,
Wang
,
S.
,
Nawaz
,
K.
, and
Jacobi
,
A. M.
,
2022
, “
Falling-Film Heat Exchangers Used in Desalination Systems: A Review
,”
Int. J. Heat Mass Transfer
,
185
, p.
122407
.10.1016/j.ijheatmasstransfer.2021.122407
You do not currently have access to this content.