Abstract

This study investigates the linear stability of two-dimensional channel flows subjected to a transverse magnetic field, with walls coated by super-hydrophobic materials that introduce slip boundary conditions. Both symmetric and asymmetric slip conditions are considered, with the stability analysis performed using both modal and nonmodal approaches. A numerical solution is obtained using a Chebyshev collocation method (CCM) via an Orr–Sommerfeld normal-mode approach. The Hartmann number (Ha) quantifies the magnetic field, and its influence on flow stability is examined. The results from both modal and nonmodal analysis indicate that the Hartmann number exerts a stabilizing effect in both symmetric and asymmetric slip configurations, enhancing the critical Reynolds number for the onset of instability. In symmetric slip flows, slip consistently enhances stability, and for sufficiently large slip lengths, the upper and lower branches of the neutral stability curve coalesce, rendering the flow linearly stable for all Reynolds numbers and wavelengths. However, the role of slip in asymmetric flows is more complex. While slip generally acts as a stabilizing agent, it can also induce destabilization under certain conditions, with this destabilizing effect becoming more pronounced as the Hartmann number increases. This dual role of slip highlights its critical influence in modulating the stability of magnetohydrodynamic (MHD) channel flows, especially in the presence of asymmetric wall conditions. The results from the nonmodal analysis appear to align with those from the modal analysis and previous literature.

References

1.
Stone
,
H. A.
,
Stroock
,
A. D.
, and
Ajdari
,
A.
,
2004
, “
Engineering Flows in Small Devices: Microfluidics Toward a Lab-on-a-Chip
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
381
411
.10.1146/annurev.fluid.36.050802.122124
2.
Squires
,
T. M.
, and
Quake
,
S. R.
,
2005
, “
Microfluidics: Fluid Physics at the Nanoliter Scale
,”
Rev. Mod. Phys.
,
77
(
3
), pp.
977
1026
.10.1103/RevModPhys.77.977
3.
Granick
,
S.
,
Zhu
,
Y.
, and
Lee
,
H.
,
2003
, “
Slippery Questions About Complex Fluids Flowing Past Solids
,”
Nat. Mater.
,
2
(
4
), pp.
221
227
.10.1038/nmat854
4.
Vinogradova
,
O. I.
,
1999
, “
Slippage of Water Over Hydrophobic Surfaces
,”
Int. J. Miner. Process.
,
56
(
1–4
), pp.
31
60
.10.1016/S0301-7516(98)00041-6
5.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
6.
Trefethen
,
L. N.
,
Trefethen
,
A. E.
,
Reddy
,
S. C.
, and
Driscoll
,
T. A.
,
1993
, “
Hydrodynamic Stability Without Eigenvalues
,”
Science
,
261
(
5121
), pp.
578
584
.10.1126/science.261.5121.578
7.
Drazin
,
P. G.
,
2002
,
Introduction to Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
8.
Davies
,
T. V.
,
1957
, “
The Theory of Hydrodynamic Stability. By C. C. Lin. Pp. 155. 22 s. 6d. 1955. (Cambridge University Press)
,”
Math. Gazette
,
41
(
337
), pp.
223
224
.10.2307/3609217
9.
Charru
,
F.
,
2011
,
Hydrodynamic Instabilities
,
Cambridge University Press
,
Cambridge, UK
.
10.
Schmid
,
P. J.
,
2007
, “
Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
129
162
.10.1146/annurev.fluid.38.050304.092139
11.
Kerswell
,
R. R.
,
2018
, “
Nonlinear Nonmodal Stability Theory
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
319
345
.10.1146/annurev-fluid-122316-045042
12.
Happel
,
J.
, and
Brenner
,
H.
,
1983
,
Low Reynolds Number Hydrodynamics
, Vol.
1
,
Springer Netherlands
,
Dordrecht
.
13.
Potter
,
M. C.
, and
Kutchey
,
J. A.
,
1973
, “
Stability of Plane Hartmann Flow Subject to a Transverse Magnetic Field
,”
Phys. Fluids
,
16
(
11
), pp.
1848
1851
.10.1063/1.1694224
14.
Lock
,
R. C.
,
1955
, “
The Stability of the Flow of an Electrically Conducting Fluid Between Parallel Planes Under a Transverse Magnetic Field
,”
Proc. R. Soc. London, Ser. A
,
233
(
1192
), pp.
105
125
.10.1098/rspa.1955.0249
15.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
,
2002
, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
,
14
(
3
), pp.
L9
L12
.10.1063/1.1432696
16.
Min
,
T.
, and
Kim
,
J.
,
2004
, “
Effects of Hydrophobic Surface on Skin-Friction Drag
,”
Phys. Fluids
,
16
(
7
), pp.
L55
L58
.10.1063/1.1755723
17.
Choi
,
C.-H.
,
Westin
,
K. J. A.
, and
Breuer
,
K. S.
,
2003
, “
Apparent Slip Flows in Hydrophilic and Hydrophobic Microchannels
,”
Phys. Fluids
,
15
(
10
), pp.
2897
2902
.10.1063/1.1605425
18.
Takashima
,
M.
,
1996
, “
The Stability of the Modified Plane Poiseuille Flow in the Presence of a Transverse Magnetic Field
,”
Fluid Dyn. Res.
,
17
(
6
), pp.
293
310
.10.1016/0169-5983(95)00038-0
19.
Chattopadhyay
,
G.
,
Sahu
,
K. C.
, and
Usha
,
R.
,
2019
, “
Spatio-Temporal Instability of Two Superposed Fluids in a Channel With Boundary Slip
,”
Int. J. Multiphase Flow
,
113
, pp.
264
278
.10.1016/j.ijmultiphaseflow.2018.10.014
20.
Chu
,
A. K.-H.
,
2004
, “
Instability of Navier Slip Flow of Liquids
,”
C. R. Méc.
,
332
(
11
), pp.
895
900
.10.1016/j.crme.2004.06.010
21.
Lauga
,
E.
, and
Cossu
,
C.
,
2005
, “
A Note on the Stability of Slip Channel Flows
,”
Phys. Fluids
,
17
(
8
), p.
088106
.10.1063/1.2032267
22.
Chai
,
C.
, and
Song
,
B.
,
2019
, “
Stability of Slip Channel Flow Revisited
,”
Phys. Fluids
,
31
(
8
), p.
084105
.10.1063/1.5108804
23.
Min
,
T.
, and
Kim
,
J.
,
2005
, “
Effects of Hydrophobic Surface on Stability and Transition
,”
Phys. Fluids
,
17
(
10
), p.
108106
.10.1063/1.2126569
24.
Straughan
,
B.
, and
Harfash
,
A. J.
,
2013
, “
Instability in Poiseuille Flow in a Porous Medium With Slip Boundary Conditions
,”
Microfluid. Nanofluid.
,
15
(
1
), pp.
109
115
.10.1007/s10404-012-1131-3
25.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2022
, “
Thermosolutal Convection in A Brinkman Porous Medium With Reaction and Slip Boundary Conditions
,”
J. Porous Media
,
25
(
1
), pp.
15
29
.10.1615/JPorMedia.2021038795
26.
Badday
,
A. J.
, and
Harfash
,
A. J.
,
2022
, “
Instability in Poiseuille Flow in a Porous Medium With Slip Boundary Conditions and Uniform Vertical Throughflow Effects
,”
J. Eng. Math.
,
135
(
1
), p.
6
.10.1007/s10665-022-10231-w
27.
Badur
,
J.
,
Karcz
,
M.
, and
Lemański
,
M.
,
2011
, “
On the Mass and Momentum Transport in the Navier–Stokes Slip Layer
,”
Microfluid. Nanofluid.
,
11
(
4
), p.
439
.10.1007/s10404-011-0809-2
28.
Duan
,
Z.
, and
Muzychka
,
Y. S.
,
2007
, “
Slip Flow in Non-Circular Microchannels
,”
Microfluid. Nanofluid.
,
3
(
4
), pp.
473
484
.10.1007/s10404-006-0141-4
29.
Ibrahim
,
S. M.
,
Kumar
,
P. V.
,
Lorenzini
,
G.
,
Lorenzini
,
E.
, and
Mabood
,
F.
,
2017
, “
Numerical Study of the Onset of Chemical Reaction and Heat Source on Dissipative MHD Stagnation Point Flow of Casson Nanofluid Over a Nonlinear Stretching Sheet With Velocity Slip and Convective Boundary Conditions
,”
J. Eng. Thermophys.
,
26
(
2
), pp.
256
271
.10.1134/S1810232817020096
30.
Hocking
,
L. M.
,
1973
, “
The Effect of Slip on the Motion of a Sphere Close to a Wall and of Two Adjacent Spheres
,”
J. Eng. Math.
,
7
(
3
), pp.
207
221
.10.1007/BF01535282
31.
Dorrepaal
,
J. M.
,
1993
, “
Slip Flow in Converging and Diverging Channels
,”
J. Eng. Math.
,
27
(
4
), pp.
343
356
.10.1007/BF00128760
32.
Challoob
,
H. A.
,
Mathkhor
,
A. J.
, and
Harfash
,
A. J.
,
2020
, “
Slip Boundary Condition Effect on Double‐Diffusive Convection in a Porous Medium: Brinkman Model
,”
Heat Transfer—Asian Res.
,
49
(
1
), pp.
258
268
.10.1002/htj.21610
33.
Kandavelu
,
V.
, and
Tlau
,
L.
,
2024
, “
Stability of Fluid Flow in a Porous Medium With Uniform Cross-Flow and Velocity Slip
,”
Chin. J. Phys.
,
90
, pp.
528
541
.10.1016/j.cjph.2024.05.026
34.
Reddy
,
S. C.
,
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1993
, “
Pseudospectra of the Orr–Sommerfeld Operator
,”
SIAM J. Appl. Math.
,
53
(
1
), pp.
15
47
.10.1137/0153002
35.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
1994
, “
Optimal Energy Density Growth in Hagen–Poiseuille Flow
,”
J. Fluid Mech.
,
277
, pp.
197
225
.10.1017/S0022112094002739
36.
Basavaraj
,
M. S.
, and
Shivaraj
,
D. L.
,
2024
, “
Algebraic Growth of 2D Optimal Perturbation of a Plane Poiseuille Flow in a Brinkman Porous Medium
,”
Math. Comput. Simul.
,
218
, pp.
526
543
.10.1016/j.matcom.2023.11.025
37.
Basavaraj
,
M. S.
, and
Shivaraj
,
D. L.
,
2024
, “
Optimal Transient Energy Growth of Two-Dimensional Perturbation in a Magnetohydrodynamic Plane Poiseuille Flow of Casson Fluid
,”
ASME J. Fluids Eng.
,
146
(
2
), p.
021304
.10.1115/1.4063117
38.
Shivaraj
,
D. L.
, and
Basavaraj
,
M. S.
,
2024
, “
Dual Analysis of Stability in Plane Poiseuille Channel Flow With Uniform Vertical Crossflow
,”
Phys. Fluids
,
36
(
3
), p.
034106
.10.1063/5.0191925
39.
Shivaraj
,
D. L.
, and
Basavaraj
,
M. S.
,
2024
, “
Stability Patterns in Plane Porous Poiseuille Flow With Uniform Vertical Cross-Flow: A Dual Approach
,”
Int. J. Non Linear Mech.
,
165
, p.
104797
.10.1016/j.ijnonlinmec.2024.104797
40.
Shivaraj
,
D. L.
,
Basavaraj
,
M. S.
, and
Aruna
,
A. S.
,
2024
, “
Linear Stability Analysis of the Viscoelastic Navier–Stokes–Voigt Fluid Model Through Brinkman Porous Media: Modal and Non-Modal Approaches
,”
Int. J. Non Linear Mech.
,
167
, p.
104885
.10.1016/j.ijnonlinmec.2024.104885
41.
Ceccacci
,
S.
,
Calabretto
,
S. A. W.
,
Thomas
,
C.
, and
Denier
,
J. P.
,
2022
, “
The Linear Stability of Slip Channel Flows
,”
Phys. Fluids
,
34
(
7
), p.
074103
.10.1063/5.0098609
You do not currently have access to this content.