Abstract

This study aims at experimentally investigating the hydrodynamic behavior of a centrifugal pump, both with and without cavitation. The pump consists of an axial inducer, a centrifugal impeller, and a volute. Three assembly configurations are examined: the inducer alone, the impeller alone, and the combined inducer and impeller. Particular attention is given to cavitating conditions—low suction pressure—at four partial flowrates (4% ϕref, 16% ϕref, 39% ϕref, and 78% ϕref), where ϕref is defined as the flow coefficient for which the inducer has been designed. The hydromechanical performance is analyzed and compared across these configurations, with cavitation formation captured using high-speed digital imaging. A spectral analysis of pressure signals is also conducted in operational regimes where instabilities were observed. The results indicate that the inducer mitigates the impact of cavitation on hydromechanical performance as the flowrate approaches the design point ϕref. However, at partial flowrates, the inducer negatively impacts pump performance by increasing the critical cavitation number threshold beyond which a head drop occurs. Cavitation-induced instabilities were observed in partial flow regimes and under low suction pressure conditions in configurations involving the inducer. These instabilities, characterized by a very low-frequency signature, result in significant pressure and flow fluctuations, leading to vibrations within the system. Furthermore, these instabilities exhibit a clear dependency on flowrate.

References

1.
Fu
,
Y.
,
Fan
,
M.
,
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
, and
d'Agostino
,
L.
,
2018
, “
Experimental and Numerical Study on Hydraulic Performances of a Turbopump With and Without an Inducer
,”
ASME
Paper No. FEDSM2018-83506.10.1115/FEDSM2018-83506
2.
Yang
,
B.
,
Li
,
B.
,
Chen
,
H.
,
Liu
,
Z.
, and
Xu
,
K.
,
2019
, “
Numerical Investigation of the Clocking Effect Between Inducer and Impeller on Pressure Pulsations in a Liquid Rocket Engine Oxygen Turbopump
,”
ASME J. Fluids Eng.
,
141
(
7
), p.
071109
.10.1115/1.4042160
3.
Liu
,
Q.
,
Qi
,
X.
,
Zhu
,
Z.
,
Gao
,
Y.
,
Yang
,
G.
,
Li
,
C.
, and
Sun
,
L.
,
2024
, “
Investigation of Cavitation Characteristics in an Aircraft Centrifugal Fuel Pump
,”
Flow Meas. Instrum.
,
96
, p.
102521
.10.1016/j.flowmeasinst.2024.102521
4.
Bakir
,
F.
,
Kouidri
,
S.
,
Noguera
,
R.
, and
Rey
,
R.
,
1998
, “
Design and Analysis of Axial Inducers Performances
,”
ASME
Paper No. FEDSM98-5118.
5.
Lee
,
K.-H.
,
Lee
,
J.-M.
,
Park
,
J.-S.
, and
Kang
,
S.-H.
,
2004
, “
A Study on Cavitation Interaction Between Inducer and Impeller in Turbopump
,”
AIAA
Paper No. 2004–4026.
6.
Kim
,
C.
,
Choi
,
C.-H.
,
Kim
,
S.
, and
Baek
,
J.
,
2021
, “
Numerical Study on the Effects of Installing an Inducer on a Pump in a Turbopump
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
235
, pp.
1877
1891
.10.1177/09576509211014984
7.
Fu
,
Y.
,
Yuan
,
J.
,
Yuan
,
S.
,
Pace
,
G.
,
d'Agostino
,
L.
,
Huang
,
P.
, and
Li
,
X.
,
2015
, “
Numerical and Experimental Analysis of Flow Phenomena in a Centrifugal Pump Operating Under Low Flow Rates
,”
ASME J. Fluids Eng.
,
137
(
1
), p.
011102
.10.1115/1.4027142
8.
Jiang
,
Q.
,
Heng
,
Y.
,
Liu
,
X.
,
Zhang
,
W.
,
Bois
,
G.
, and
Si
,
Q.
,
2019
, “
A Review of Design Considerations of Centrifugal Pump Capability for Handling Inlet Gas-Liquid Two-Phase Flows
,”
Energies
,
12
(
6
), p.
1078
.10.3390/en12061078
9.
Tomov
,
P.
,
Pora
,
L.
,
Paridaens
,
R.
,
Magne
,
T.
,
Kebdani
,
M.
,
Khelladi
,
S.
, and
Bakir
,
F.
,
2022
, “
Study of the Hydraulic Performances of Two Inducers in Water–CO2 Mixture—Toward Performance Improvement With Suppression of Prerotation
,”
ASME J. Fluids Eng.
,
144
(
4
), p.
041203
.10.1115/1.4052951
10.
Lapray
,
J.-F.
,
1994
,
Pompes centrifuges, hélico-centrifuges et axiales: cavitation,
Techniques de l'ingénieur,Saint-Denis Cedex, France, accessed Mar. 18, 2025, https://www.techniques-ingenieur.fr/base-documentaire/mecanique-th7/machines-hydrauliques-pompes-et-helices-42173210/pompes-centrifuges-helico-centrifuges-et-axiales-cavitation-b4313/
11.
Wang
,
D.
,
Gao
,
B.
,
Chen
,
Y.
,
Pan
,
Y.
,
Luo
,
J.
,
Liu
,
L.
,
Wei
,
Q.
, and
Liu
,
L.
,
2023
, “
Effects of Matching Between the Inducer and the Impeller of a Centrifugal Pump on Its Cavitation Performance
,”
Machines
,
11
(
2
), p.
142
.10.3390/machines11020142
12.
Young
,
W. E.
,
Murphy
,
R.
, and
Reddecliff
,
J. M.
,
1972
, “
Study of Cavitating Inducer Instabilities
,”
NASA
, Huntsville, AL, Report No.
NASA-CR-123939
.https://ntrs.nasa.gov/citations/19730004572
13.
Japikse
,
D.
,
1981
, “
Stall, Stage Stall, and Surge
,”
Proceedings of the Tenth Turbomachinery Symposium, Texas A & M University
, College Station, TX, pp.
1
14
.https://oaktrust.library.tamu.edu/server/api/core/bitstreams/a2b0ba31-6e9a-41c2-9d4d-a0477c87f3ac/content#:~:text=An%20extensive%20introduction%20to%20stall,examined%20for%20their%20stall%20characteristics
14.
Del Valle
,
J.
,
Braisted
,
D. M.
, and
Brennen
,
C. E.
,
1992
, “
The Effects of Inlet Flow Modification on Cavitating Inducer Performance
,”
ASME J. Turbomach.
,
114
(
2
), pp.
360
365
.10.1115/1.2929152
15.
Bhattacharyya
,
A.
,
Acosta
,
A. J.
,
Brennen
,
C. E.
, and
Caughey
,
T. K.
,
1993
, “
Observations on Off-Design Flows in Non-Cavitating Axial Flow Inducers
,”
ASME Symposium on Pumping Machinery
, New Orleans, LA, Nov. 28--Dec. 3, pp.
135
141
.http://brennen.caltech.edu/PUBPAPERS/papers/BHA132.pdf
16.
Brennen
,
C. E.
,
2011
,
Hydrodynamics of Pumps
,
Cambridge University Press
,
Cambridge, UK
.
17.
Sloteman
,
D. P.
,
Cooper
,
P.
, and
Dussord
,
J. L.
,
1984
, “
Control of Backflow at the Inlets of Centrifugal Pumps and Inducers
,”
Proceedings of the First International Pump Symposium
, Houston, TX, pp. 9--22.https://oaktrust.library.tamu.edu/server/api/core/bitstreams/c962f019-29e7-43fe-9a32-bdd742717c3d/content
18.
Gentis
,
V.
,
Pereira
,
M.
,
Ravelet
,
F.
,
Bakir
,
F.
,
Pora
,
L.
, and
Tomov
,
P.
,
2022
, “
Etude numérique des interactions entre un rouet centrifuge et un inducteur
,”
Congrès Français de Mécanique
, Nantes, France, Aug. 29–Sept. 2, pp. 37–49.https://hal.science/hal-03708443v1/document
19.
Lundgreen
,
R.
,
Maynes
,
D.
,
Gorrell
,
S.
, and
Oliphant
,
K.
,
2014
, “
Influence of a Stability Control Device on the Performance of a Cavitating Water Pump Inducer
,”
ASME
Paper No. FEDSM2014-21138.10.1115/FEDSM2014-21138
20.
Ito
,
Y.
,
Tsunoda
,
A.
,
Kurishita
,
Y.
,
Kitano
,
S.
, and
Nagasaki
,
T.
,
2016
, “
Experimental Visualization of Cryogenic Backflow Vortex Cavitation With Thermodynamic Effects
,”
J. Propul. Power
,
32
(
1
), pp.
71
82
.10.2514/1.B35782
21.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Brennen
,
C. E.
,
2001
, “
Unified Treatment of Flow Instabilities of Turbomachines
,”
J. Propul. Power
,
17
(
3
), pp.
636
643
.10.2514/2.5790
22.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
23.
Watanabe
,
T.
,
Kang
,
D.
,
Cervone
,
A.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2008
, “
Choked Surge in a Cavitating Turbopump Inducer
,”
Int. J. Fluid Mach. Syst.
,
1
(
1
), pp.
64
75
.10.5293/IJFMS.2008.1.1.064
24.
Tanaka
,
Y.
,
Kitabata
,
T.
,
Nasu
,
K.
,
Watanabe
,
S.
, and
Sakata
,
A.
,
2022
, “
Suppression of Cavitation Surge in Turbopump With Inducer by Reduced-Diameter Suction Pipe With Swirl Brake
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071205
.10.1115/1.4052926
25.
Tsujimoto
,
Y.
,
2006
, “
Cavitation Instabilities in Inducers
,”
Design and Analysis of High Speed Pumps, Educational Notes RTO-EN-AVT-143
, pp.
1
8
.
26.
Yamamoto
,
K.
, and
Tsujimoto
,
Y.
,
2009
, “
Backflow Vortex Cavitation and Its Effects on Cavitation Instabilities
,”
Int. J. Fluid Mach. Syst.
,
2
(
1
), pp.
40
54
.10.5293/IJFMS.2009.2.1.040
27.
Yamamoto
,
K.
,
1991
, “
Instability in a Cavitating Centrifugal Pump
,”
JSME Int. J. Ser. 2
,
34
(
1
), pp.
9
17
.10.1299/jsmeb1988.34.1_9
28.
Zoladz
,
T.
,
2000
, “
Observations on Rotating Cavitation and Cavitation Surge From the Development of the Fastrac Engine Turbopump
,”
AIAA Paper No. 2000
10.2514/6.2000-3403.
29.
Kang
,
D.
,
Arimoto
,
Y.
,
Yonezawa
,
K.
,
Horiguchi
,
H.
,
Kawata
,
Y.
,
Hah
,
C.
, and
Tsujimoto
,
Y.
,
2010
, “
Suppression of Cavitation Instabilities in an Inducer by Circumferential Groove and Explanation of Higher Frequency Components
,”
Int. J. Fluid Mach. Syst.
,
3
(
2
), pp.
137
149
.10.5293/IJFMS.2010.3.2.137
30.
Pace
,
G.
,
Valentini
,
D.
,
Pasini
,
A.
,
Hadavandi
,
R.
, and
D'agostino
,
L.
,
2019
, “
Analysis of Flow Instabilities on a Three-Bladed Axial Inducer in Fixed and Rotating Frames
,”
ASME J. Fluids Eng.
, 141(4), p. 041104.10.1115/1.4041731
31.
Xu
,
Z.
,
Kong
,
F.
,
Zhang
,
H.
,
Zhang
,
K.
,
Wang
,
J.
, and
Qiu
,
N.
,
2021
, “
Research on Visualization of Inducer Cavitation of High-Speed Centrifugal Pump in Low Flow Conditions
,”
J. Mar. Sci. Eng.
,
9
(
11
), p.
1240
.10.3390/jmse9111240
32.
Magne
,
T.
,
Paridaens
,
R.
,
Khelladi
,
S.
,
Bakir
,
F.
,
Tomov
,
P.
, and
Pora
,
L.
,
2020
, “
Experimental Study of the Hydraulic Performances of Two Three-Bladed Inducers in Water, Water With Dissolved CO2, and Jet Fuel
,”
ASME J. Fluids Eng.
,
142
(
11
), p.
111210
.10.1115/1.4048143
33.
Dehnavi
,
E.
,
Danlos
,
A.
,
Solis
,
M.
,
Kebdani
,
M.
, and
Bakir
,
F.
,
2024
, “
Study on the Pump Cavitation Characteristic Through Novel Independent Rotation of Inducer and Centrifugal Impeller in Co-Rotation and Counter-Rotation Modes
,”
Phys. Fluids
,
36
(
1
), p.
015120
.10.1063/5.0182731
34.
Jiang
,
W.
,
Li
,
G.
,
Liu
,
P.-F.
, and
Fu
,
L.
,
2016
, “
Numerical Investigation of Influence of the Clocking Effect on the Unsteady Pressure Fluctuations and Radial Forces in the Centrifugal Pump With Vaned Diffuser
,”
Int. Commun. Heat Mass Transfer
,
71
, pp.
164
171
.10.1016/j.icheatmasstransfer.2015.12.025
35.
Wang
,
H.
,
Feng
,
J.
,
Liu
,
K.
,
Shen
,
X.
,
Xu
,
B.
,
Zhang
,
D.
, and
Zhang
,
W.
,
2022
, “
Experimental Study on Unsteady Cavitating Flow and Its Instability in Liquid Rocket Engine Inducer
,”
J. Mar. Sci. Eng.
,
10
(
6
), p.
806
.10.3390/jmse10060806
36.
Lundgreen
,
R.
,
Maynes
,
D.
,
Gorrell
,
S.
, and
Oliphant
,
K.
,
2019
, “
Increasing Inducer Stability and Suction Performance With a Stability Control Device
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011204
.10.1115/1.4040098
You do not currently have access to this content.