Abstract

This study investigates the sustainability and applicability of commercial superhydrophobic (SH) coatings for reducing skin friction drag. Three different SH surfaces were applied to flat plates using a spray coating technique, with static contact angles of 145 deg, 147 deg, and 155 deg, respectively. Turbulent flow measurements were conducted using a two-dimensional laser Doppler velocimetry (LDV) system in an open channel flow facility at a Reynolds number of 34200. The novelty of this work lies in characterizing drag reduction from the leading edge to the trailing edge of the fabricated surface in the streamwise direction rather than one measurement plane. Velocity measurements were performed in a spanwise direction at selected planes. The study also evaluated the correlation between slip velocity and slip length, showing that slip length becomes equivalent to the coating thickness as the plastron depletes. The fabricated SH surfaces increased turbulence intensity and Reynolds normal stress, primarily near the wall, with diminishing effects further away. This confirms the existence of an interference region of air/water near the wall induced by SH surfaces. Overall, the results demonstrated average drag reductions of 11%, 7%, and 18% for the tested surfaces. The study provides strong evidence for the effectiveness of SH surfaces in consistently reducing viscous drag across the entire plate span, from the leading edge to the trailing edge.

References

1.
Qi
,
X.
, and
Song
,
D. P.
,
2012
, “
Minimizing Fuel Emissions by Optimizing Vessel Schedules in Liner Shipping With Uncertain Port Times
,”
Transp. Res. Part E Logist. Transp. Rev.
,
48
(
4
), pp.
863
880
.10.1016/j.tre.2012.02.001
2.
Fukuda
,
K.
,
Tokunaga
,
J.
,
Nobunaga
,
T.
,
Nakatani
,
T.
,
Iwasaki
,
T.
, and
Kunitake
,
Y.
,
2000
, “
Frictional Drag Reduction With Air Lubricant Over a Super-Water-Repellent Surface
,”
J. Mar. Sci. Technol.
,
5
(
3
), pp.
123
130
.10.1007/s007730070009
3.
Fu
,
Y. F.
,
Yuan
,
C. Q.
, and
Bai
,
X. Q.
,
2017
, “
Marine Drag Reduction of Shark Skin Inspired Riblet Surfaces
,”
Biosurface Biotribol.
,
3
(
1
), pp.
11
24
.10.1016/j.bsbt.2017.02.001
4.
Sreenivasan
,
K. R.
, and
White
,
C. M.
,
2000
, “
The Onset of Drag Reduction by Dilute Polymer Additives, and the Maximum Drag Reduction Asymptote
,”
J. Fluid Mech.
,
409
, pp.
149
164
.10.1017/S0022112099007818
5.
Samaha
,
M. A.
,
Tafreshi
,
H. V.
, and
Gad-el-Hak
,
M.
,
2011
, “
Superhydrophobic Surfaces: From the Lotus Leaf to the Submarine
,”
C. R. Mec
,.
340
(
1–2
), pp.
18
34
.10.1016/j.crme.2011.11.002
6.
Zhang
,
X.
,
Duan
,
X.
, and
Muzychka
,
Y.
,
2018
, “
New Mechanism and Correlation for Degradation of Drag-Reducing Agents in Turbulent Flow With Measured Data From a Double-Gap Rheometer
,”
Colloid Polym. Sci.
,
296
(
4
), pp.
829
834
.10.1007/s00396-018-4300-4
7.
Rothstein
,
J. P.
,
2010
, “
Slip on Superhydrophobic Surfaces
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
89
109
.10.1146/annurev-fluid-121108-145558
8.
Lee
,
C.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2016
, “
Superhydrophobic Drag Reduction in Laminar Flows: A Critical Review
,”
Exp. Fluids
,
57
(
12
), pp.
1
20
.10.1007/s00348-016-2264-z
9.
Luo
,
Y.
,
Wang
,
L.
,
Green
,
L.
,
Song
,
K.
,
Wang
,
L.
, and
Smith
,
R.
,
2015
, “
Advances of Drag-Reducing Surface Technologies in Turbulence Based on Boundary Layer Control
,”
J. Hydrodyn.
,
27
(
4
), pp.
473
487
.10.1016/S1001-6058(15)60507-8
10.
Simpson
,
J. T.
,
Hunter
,
S. R.
, and
Aytug
,
T.
,
2015
, “
Superhydrophobic Materials and Coatings: A Review Reports
,”
Prog Physics
,
78
, p.
086501
.10.1088/0034-4885/78/8/086501
11.
Mohammadi
,
A.
, and
Floryan
,
J. M.
,
2012
, “
Mechanism of Drag Generation by Surface Corrugation
,”.
Phys. Fluids
,
24
(
1
), p.
013602
.10.1063/1.3675557
12.
Das
,
S.
,
Kumar
,
S.
,
Samal
,
S. K.
,
Mohanty
,
S.
, and
Nayak
,
S. K.
,
2018
, “
A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications
,”
Ind. Eng. Chem. Res.
,
57
(
8
), pp.
2727
2745
.10.1021/acs.iecr.7b04887
13.
Yunqing
,
G.
,
Tao
,
L.
,
Jiegang
,
M.
,
Zhengzan
,
S.
, and
Peijian
,
Z.
,
2017
, “
Analysis of Drag Reduction Methods and Mechanisms of Turbulent
,”
Appl. Bionics Biomech.
,
2017
, pp.
1
8
.10.1155/2017/6858720
14.
Soleimani
,
S.
, and
Eckels
,
S.
,
2021
, Feb 1;9:“
A Review of Drag Reduction and Heat Transfer Enhancement by Riblet Surfaces in Closed and Open Channel Flow
,”
Int. J. Thermofluids
,
9
, p.
100053
.10.1016/j.ijft.2020.100053
15.
Jouin
,
A.
,
Cherubini
,
S.
, and
Robinet
,
J. C.
,
2024
, “
Turbulent Transition in a Channel With Superhydrophobic Walls: Anisotropic Slip and Shear Misalignment Effects
,”
J. Fluid Mech.
,
980
, pp. A49.10.1017/jfm.2024.3
16.
Picella
,
F.
,
Robinet
,
J. C.
, and
Cherubini
,
S.
,
2020
, “
On the Influence of the Modelling of Superhydrophobic Surfaces on Laminar–Turbulent Transition
,”
J. Fluid Mech.
,
901
,p.
A15
.10.1017/jfm.2020.516
17.
Picella
,
F.
,
Robinet
,
J. C.
, and
Cherubini
,
S.
,
2019
, “
Laminar–Turbulent Transition in Channel Flow With Superhydrophobic Surfaces Modelled as a Partial Slip Wall
,”
J. Fluid Mech.
,
881
, pp.
462
497
.10.1017/jfm.2019.740
18.
Yu
,
C.
,
Liu
,
M.
,
Zhang
,
C.
,
Yan
,
H.
,
Zhang
,
M.
,
Wu
,
Q.
,
Liu
,
M.
, and
Jiang
,
L.
,
2020
, Jun 1;“
Bio-Inspired Drag Reduction: From Nature Organisms to Artificial Functional Surfaces
,”
Giant
,
2
, p.
100017
.10.1016/j.giant.2020.100017
19.
Gose
,
J. W.
,
Golovin
,
K.
,
Boban
,
M.
,
Mabry
,
J. M.
,
Tuteja
,
A.
,
Perlin
,
M.
, and
Ceccio
,
S. L.
,
2018
, “
Characterization of Superhydrophobic Surfaces for Drag Reduction in Turbulent Flow
,”
J. Fluid Mech.
,
845
, pp.
560
580
.10.1017/jfm.2018.210
20.
Krupenkin
,
T. N.
,
Taylor
,
J. A.
,
Schneider
,
T. M.
, and
Yang
,
S.
,
2004
, “
From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces
,”
Langmuir
,
20
(
10
), pp.
3824
3827
.10.1021/la036093q
21.
Daniello
,
R. J.
,
Waterhouse
,
N.
, and
E and Rothstein
,
J. P.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”.
Phys Fluids
,
21
(
8
), p.
085103
.0.1063/1.3207885
22.
Park
,
H.
,
Choi
,
C. H.
, and
Kim
,
C. J.
,
2021
, “
Superhydrophobic Drag Reduction in Turbulent Flows: A Critical Review
,”
Exp. Fluids
,
62
(
11
), pp.
1
29
.10.1007/s00348-021-03322-4
23.
Reholon
,
D.
, and
Ghaemi
,
S.
,
2018
, “
Plastron Morphology and Drag of a Superhydrophobic Surface in Turbulent Regime
,”
Phys. Rev. Fluids
,
3
(
10
), p. 104003.10.1103/PhysRevFluids.3.104003
24.
Rowin
,
W. A.
, and
Ghaemi
,
S.
,
2019
, “
Streamwise and Spanwise Slip Over a Superhydrophobic Surface
,”
J. Fluid Mech.
,
870
, pp.
1127
1157
.10.1017/jfm.2019.225
25.
Woolford
,
B.
,
Prince
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
,
2009
, “
Particle Image Velocimetry Characterization of Turbulent Channel Flow With Rib Patterned Superhydrophobic Walls
,”
Phys Fluids
,
21
(
8
), p.
085106
.10.1063/1.3213607
26.
Aljallis
,
E.
,
Sarshar
,
M. A.
,
Datla
,
R.
,
Sikka
,
V.
,
Jones
,
A.
, and
Choi
,
C. H.
,
2013
, “
Experimental Study of Skin Friction Drag Reduction on Superhydrophobic Flat Plates in High Reynolds Number Boundary Layer Flow
,”
Phys Fluids
,
25
(
2
), p.
025103
.10.1063/1.4791602
27.
Jia-Peng
,
Z.
,
Xiang-Dang
,
D. U.
, and
Xiu-Hua
,
S. H. I.
,
2007
, “
Experimental Research on Friction-Reduction With Super-Hydrophobic Surfaces
,”
J. Mar. Sci. Appl.
,
6
(
3
), pp.
58
61
.10.1007/s11804-007-7007-3
28.
Peguero
,
C.
, and
Breuer
,
K.
,
2009
, “
On Drag Reduction in Turbulent Channel Flow Over Superhydrophobic Surfaces
,”
12th EUROMECH European Turbulence Conference
, Marburg, Germany, Sept. 7–
10
, pp.
233
236
.10.1007/978-3-642-03085-7_57
29.
Park
,
H.
,
Sun
,
G.
, and
Kim
,
C. J.
,
2014
, “
Superhydrophobic Turbulent Drag Reduction as a Function of Surface Grating Parameters
,”
J. Fluid Mech.
,
747
, pp.
722
734
.10.1017/jfm.2014.151
30.
Bidkar
,
R. A.
,
Leblanc
,
L.
,
Kulkarni
,
A. J.
,
Bahadur
,
V.
,
Ceccio
,
S. L.
, and
Perlin
,
M.
,
2014
, “
Skin-Friction Drag Reduction in the Turbulent Regime Using Random-Textured Hydrophobic Surfaces
,”.
Phys Fluids
,
26
(
8
), p.
085108
.10.1063/1.4892902
31.
Ling
,
H.
,
Srinivasan
,
S.
,
Golovin
,
K.
,
McKinley
,
G. H.
,
Tuteja
,
A.
, and
Katz
,
J.
,
2016
, “
High-Resolution Velocity Measurement in the Inner Part of Turbulent Boundary Layers Over Superhydrophobic Surfaces
,”
J. Fluid Mech.
,
801
, pp.
670
703
.10.1017/jfm.2016.450
32.
Zhang
,
J.
,
Tian
,
H.
,
Yao
,
Z.
,
Hao
,
P.
, and
Jiang
,
N.
,
2015
, “
Mechanisms of Drag Reduction of Superhydrophobic Surfaces in a Turbulent Boundary Layer Flow
,”
Exp. Fluids
,
56
(
9
), pp.
1
13
.10.1007/s00348-015-2047-y
33.
Hokmabad
,
B. V.
, and
Ghaemi
,
S.
,
2016
, “
Turbulent Flow Over Wetted and Non- Wetted Superhydrophobic Counterparts With Random Structure
,”
Phys Fluids
, 28(1), p.
015112
.10.1063/1.4940325
34.
Abu Rowin
,
W.
,
Hou
,
J.
, and
Ghaemi
,
S.
,
2018
, “
Turbulent Channel Flow Over Riblets With Superhydrophobic Coating
,”
Exp. Therm. Fluid Sci.
,
94
, pp.
192
204
.10.1016/j.expthermflusci.2018.02.001
35.
Gogte
,
S.
,
Vorobieff
,
P.
,
Truesdell
,
R.
,
Mammoli
,
A.
,
van Swol
,
F.
,
Shah
,
P.
, and
Brinker
,
C. J.
,
2005
, “
Effective Slip on Textured Superhydrophobic Surfaces
,”
Phys. Fluids
,
17
(
5
), p.
051701
.10.1063/1.1896405
36.
Henoch
,
C.
,
Krupenkin
,
T. N.
,
Kolodner
,
P.
,
Taylor
,
J. A.
,
Hodes
,
M. S.
,
Lyons
,
A. M.
,
Peguero
,
C.
, and
Breuer
,
K.
,
2006
, “
Turbulent Drag Reduction Using Superhydrophobic Surfaces Collect
,”
AIAA
Paper No. 2006–3192.10.2514/6.2006-3192
37.
Bhushan
,
B.
,
2014
, “
Biomimetic Structures for Fluid Drag Reduction in Laminar and Turbulent Flows
,”
J. Phys.: Condens. Matter
, 22(3), p.
035104
.10.1088/0953-8984/22/3/035104
38.
Pierce
,
E.
,
Carmona
,
F. J.
, and
Amirfazli
,
A.
,
2008
, “
Understanding of Sliding and Contact Angle Results in Tilted Plate Experiments
,”
Colloids Surf. A Physicochem. Eng. Asp.
,
323
(
1–3
), pp.
73
82
.10.1016/j.colsurfa.2007.09.032
39.
Nyantekyi-Kwakye
,
B.
,
Essel
,
E. E.
,
Dow
,
K.
,
Clark
,
S. P.
, and
Tachie
,
M. F.
,
2020
, “
Hydraulic and Turbulent Flow Characteristics Beneath a Simulated Partial Ice-Cover
,”
J. Hydraul. Res.
, 59(3), pp.
392
403
.10.1080/00221686.2020.1780493
40.
Voronov, R. S., Papavassiliou, D. V., and Lee, L. L., 2008, “Review of Fluid Slip Over Superhydrophobic Surfaces and its Dependence on the Contact Angle,”
Ind. Eng. Chem. Res.
, 47(8), pp.
2455
2477
.10.1021/ie0712941
41.
Schwarz
,
A. C.
,
Plesniak
,
M. W.
, and
Murthy
,
S.
,
1999
, “
Turbulent Boundary Layers Subjected to Multiple Strains
,”
ASME J. Fluids Eng.
,
121
(
3
), pp.
526
532
.10.1115/1.2823500
42.
Abu Rowin
,
W.
,
Hou
,
J.
, and
Ghaemia
,
S.
,
2017
, “
Inner and Outer Layer Turbulence Over a Superhydrophobic Surface With Low Roughness Level at Low Reynolds Number
,”
Phys Fluids
,
29
(
9
), p.
095106
.10.1063/1.5004398
43.
Alsharief
,
A. F.
,
2024
, “
Experimental Investigation and Theoretical Analysis of Passive Drag Reduction Over Surfaces of Various Degrees of Wettability
,” Doctoral dissertation,
Memorial University of Newfoundland
, St. John's, NL, Canada.
44.
Paschkewitz
,
J. S.
,
Dubief
,
Y.
, and
Shaqfeh
,
E. S. G.
,
2005
, “
The Dynamic Mechanism for Turbulent Drag Reduction Using Rigid Fibers Based on Lagrangian Conditional Statistics
,”
Phys. Fluids
,
17
(
6
), p. 063102.10.1063/1.1925447
45.
Hwang
,
Y.
,
2024
, “
Near-Wall Streamwise Turbulence Intensity as Re τ→∞
,”
Phys. Rev. Fluids
,
9
(
4
), p.
044601
.10.1103/PhysRevFluids.9.044601
46.
Lee
,
S. H.
, and
Sung
,
H. J.
,
2007
, “
Direct Numerical Simulation of the Turbulent Boundary Layer Over a Rod-Roughened Wall
,”
J. Fluid Mech.
,
584
, pp.
125
146
.10.1017/S0022112007006465
47.
Saito
,
N.
, and
Pullin
,
D. I.
,
2014
, “
Large Eddy Simulation of Smooth-Rough-Smooth Transitions in Turbulent Channel Flows
,”
Int. J. Heat Mass Transfer
,
78
, pp.
707
720
.10.1016/j.ijheatmasstransfer.2014.06.088
48.
Fukagata
,
K.
,
Kasagi
,
N.
, and
Koumoutsakos
,
P.
,
2006
, “
A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic Surfaces
,”
Phys. Fluids
,
18
(
5
), p.
051703
.10.1063/1.2205307
49.
Alsharief
,
A. F. A.
,
Duan
,
X.
, and
Muzychka
,
Y. S.
,
2023
, “
Evolution of Air Plastron Thickness and Slip Length Over Superhydrophobic Surfaces in Taylor Couette Flows
,”
Fluids
,
8
(
4
), p.
133
.10.3390/fluids8040133
50.
Alsharief
,
A.
,
Duan
,
X.
,
Yethiraj
,
A.
, and
Muzychka
,
Y.
,
2024
, “
Wettability Effects of Curved Superhydrophobic Surfaces On Drag Reduction in Taylor-Couette Flows of Water and Oil
,”
ASME J. Fluids Eng.
,
146
(
1
), p.
011402
.10.1115/1.4063435
51.
Mohamed
,
A.
,
Duan
,
X.
,
Nyantekyi-Kwakye
,
B.
, and
Muzychka
,
Y.
,
2023
, Experimental Investigation of Drag Reduction Over Superhydrophobic Surfaces in an Open Channel Flow,”
Proceedings of the Thermal and Fluids Engineering Summer Conference
, Maryland, MD, Mar. 26–29, pp.
1
5
.https://www.researchgate.net/profile/Xili-Duan/publication/371002387_EXPERIMENTAL_INVESTIGATION_OF_DRAG_REDUCTION_OVER_SUPERHYDROPHOBIC_SURFACES_IN_AN_OPEN_CHANNEL_FLOW/links/655f4339b1398a779dab80d4/EXPERIMENTAL-INVESTIGATION-OF-DRAG-REDUCTION-OVER-SUPERHYDROPHOBIC-SURFACES-IN-AN-OPEN-CHANNEL-FLOW.pdf
You do not currently have access to this content.