Abstract

The effect of nozzle convergence angle of a circular synthetic jet actuator issuing into a turbulent crossflow is investigated using unsteady Reynolds-averaged Navier–Stokes simulations. The study examines three convergence angles, 30deg,45deg, and 90deg with constant neck and jet-exit diameters, actuation frequency, and amplitude. The crossflow Reynolds number is based on the momentum thickness, Reθ=895 and boundary layer thickness, δ/d=7.75, where d is the jet-exit diameter. The results showed that the jet-exit momentum was significantly enhanced as the convergence angle increased. The increased jet momentum resulted in enhanced mixing in the near field of the jet, rapid development of hairpin vortices attached to the wall, and deeper penetration of these vortices into the crossflow boundary layer. The hairpins and near-wall tertiary vortices promoted sweep and ejection motions, which enhanced wall shear stress in the actuated cases, demonstrating greater potential for flow separation control, particularly for the nozzle with a 90deg convergence angle.

References

1.
Arshad
,
A.
,
Jabbal
,
M.
, and
Yan
,
Y.
,
2020
, “
Synthetic Jet Actuators for Heat Transfer Enhancement—A Critical Review
,”
Int. J. Heat Mass Transfer
,
146
, p.
118815
.10.1016/j.ijheatmasstransfer.2019.118815
2.
Krishan
,
G.
,
Aw
,
K. C.
, and
Sharma
,
R. N.
,
2019
, “
Synthetic Jet Impingement Heat Transfer Enhancement—A Review
,”
Appl. Therm. Eng.
,
149
, pp.
1305
1323
.10.1016/j.applthermaleng.2018.12.134
3.
Wang
,
H.
, and
Menon
,
S.
,
2001
, “
Fuel-Air Mixing Enhancement by Synthetic Microjets
,”
AIAA J.
,
39
(
12
), pp.
2308
2319
.10.2514/2.1236
4.
Wang
,
L.
,
Feng
,
L. H.
,
Wang
,
J. J.
, and
Li
,
T.
,
2018
, “
Characteristics and Mechanism of Mixing Enhancement for Noncircular Synthetic Jets at Low Reynolds Number
,”
Exp. Therm. Fluid Sci.
,
98
, pp.
731
743
.10.1016/j.expthermflusci.2018.06.021
5.
Zhang
,
S.
, and
Zhong
,
S.
,
2011
, “
Turbulent Flow Separation Control Over a Two-Dimensional Ramp Using Synthetic Jets
,”
AIAA J.
,
49
(
12
), pp.
2637
2649
.10.2514/1.J051046
6.
Feero
,
M. A.
,
Goodfellow
,
S. D.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2015
, “
Flow Reattachment Using Synthetic Jet Actuation on a low-Reynolds-Number Airfoil
,”
AIAA J.
,
53
(
7
), pp.
2005
2014
.10.2514/1.J053605
7.
Zhang
,
S.
, and
Zhong
,
S.
,
2010
, “
Experimental Investigation of Flow Separation Control Using an Array of Synthetic Jets
,”
AIAA J.
,
48
(
3
), pp.
611
623
.10.2514/1.43673
8.
Smith
,
B. L.
, and
Glezer
,
A.
,
2002
, “
Jet Vectoring Using Synthetic Jets
,”
J. Fluid Mech.
,
458
, pp.
1
34
.10.1017/S0022112001007406
9.
Smith
,
B. L.
, and
Glezer
,
A.
,
2005
, “
Vectoring of Adjacent Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2117
2124
.10.2514/1.12910
10.
Guo
,
D.
,
Cary
,
A. W.
, and
Agarwal
,
R. K.
,
2003
, “
Numerical Simulation of Vectoring of a Primary Jet With a Synthetic Jet
,”
AIAA J.
,
41
(
12
), pp.
2364
2370
.10.2514/2.6861
11.
Sawant
,
S. G.
,
George
,
B.
,
Ukeiley
,
L. S.
, and
Arnold
,
D. P.
,
2018
, “
Microfabricated Electrodynamic Synthetic Jet Actuators
,”
J. Microelectromech. Syst.
,
27
(
1
), pp.
95
105
.10.1109/JMEMS.2017.2769445
12.
Sourtiji
,
E.
, and
Peles
,
Y.
,
2019
, “
A Micro-Synthetic Jet in a Microchannel Using Bubble Growth and Collapse
,”
Appl. Therm. Eng.
,
160
, p.
114084
.10.1016/j.applthermaleng.2019.114084
13.
Pasa
,
J.
,
Panda
,
S.
, and
Arumuru
,
V.
,
2023
, “
Focusing of Jet From Synthetic Jet Array Using Non-Linear Phase Delay
,”
Phys. Fluids
,
35
(
5
), p.
055141
.10.1063/5.0148794
14.
Vasile
,
J. D.
, and
Amitay
,
M.
,
2013
, “
Interactions of an Array of Finite Span Synthetic Jets and a Crossflow
,”
AIAA J.
,
51
(
10
), pp.
2503
2512
.10.2514/1.J052432
15.
Wang
,
L.
,
Feng
,
L. H.
,
Wang
,
J. J.
, and
Li
,
T.
,
2018
, “
Evolution of Low-Aspect-Ratio Rectangular Synthetic Jets in a Quiescent Environment
,”
Exp. Fluids
,
59
(
6
), pp.
1
16
.10.1007/s00348-017-2450-7
16.
Oren
,
L.
,
Gutmark
,
E.
,
Muragappan
,
S.
, and
Khosla
,
S.
,
2009
, “
Flow Characteristics of Non Circular Synthetic Jets
,”
AIAA
Paper No. 2009-1309.10.2514/6.2009-1309
17.
Zhong
,
S.
,
Garcillan
,
L.
, Pokusevski,
Z.
, and
Wood
,
N. J.
,
2004
, “
A PIV Study of Synthetic Jets With Different Orifice Shape and Orientation
,”
AIAA
Paper No. 2004-2213.10.2514/6.2004-2213
18.
Bridges
,
A.
, and
Smith
,
D. R.
,
2003
, “
Influence of Orifice Orientation on a Synthetic Jet-Boundary-Layer Interaction
,”
AIAA J.
,
41
(
12
), pp.
2394
2402
.10.2514/2.6838
19.
Milanovic
,
I. M.
, and
Zaman
,
K. B. M. Q.
,
2005
, “
Synthetic Jets in Crossflow
,”
AIAA J
,.,
43
(
5
), pp.
929
940
.10.2514/1.4714
20.
Zhong
,
S.
,
Millet
,
F.
, and
Wood
,
N. J.
,
2005
, “
The Behaviour of Circular Synthetic Jets in a Laminar Boundary Layer
,”
Aeronaut. J.
,
109
(
1100
), pp.
461
470
.10.1017/S0001924000000877
21.
Jabbal
,
M.
, and
Zhong
,
S.
,
2010
, “
Particle Image Velocimetry Measurements of the Interaction of Synthetic Jets With a Zero-Pressure Gradient Laminar Boundary Layer
,”
Phys. Fluids
,
22
(
6
), pp.
1
17
.10.1063/1.3432133
22.
Jabbal
,
M.
,
Wu
,
J.
, and
Zhong
,
S.
,
2006
, “
The Performance of Round Synthetic Jets in Quiescent Flow
,”
Aeronaut. J.
,
110
(
1108
), pp.
385
393
.10.1017/S0001924000001305
23.
Lee
,
C. Y.
, and
Goldstein
,
D. B.
,
2002
, “
Two-Dimensional Synthetic Jet Simulation
,”
AIAA J.
,
40
(
3
), pp.
510
516
.10.2514/2.1675
24.
Ravi
,
B. R.
,
Mittal
,
R.
, and
Najjar
,
F. M.
,
2004
, “
Study of Three-Dimensional Synthetic Jet Flowfields Using Direct-Numerical Simulation
,”
AIAA
Paper No. 2004-91.10.2514/6.2004-91
25.
Ho
,
H. H.
,
Essel
,
E. E.
, and
Sullivan
,
P. E.
,
2022
, “
The Interactions of a Circular Synthetic Jet With a Turbulent Crossflow
,”
Phys. Fluids
,
34
(
7
), p.
075108
.10.1063/5.0099533
26.
Xia
,
Q.
,
Lei
,
S.
,
Ma
,
J.
, and
Zhong
,
S.
,
2014
, “
Numerical Study of Circular Synthetic Jets at Low Reynolds Numbers
,”
Int J. Heat Fluid Flow
,
50
, pp.
456
466
.10.1016/j.ijheatfluidflow.2014.10.019
27.
Bazdidi-Tehrani
,
F.
,
Abouata
,
A.
,
Hatami
,
M.
, and
Bohlooli
,
N.
,
2016
, “
Investigation of Effects of Compressibility, Geometric and Flow Parameters on the Simulation of a Synthetic Jet Behaviour
,”
Aeronaut. J.
,
120
(
1225
), pp.
521
546
.10.1017/aer.2016.8
28.
Shuster
,
J. M.
, and
Smith
,
D. R.
,
2007
, “
Experimental Study of the Formation and Scaling of a Round Synthetic Jet
,”
Phys. Fluids
,
19
(
4
), p.
045109
.10.1063/1.2711481
29.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B. L.
, and
Cattafesta
,
L.
,
2005
, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2110
2116
.10.2514/1.12033
30.
Hong
,
M. H.
,
Cheng
,
S. Y.
, and
Zhong
,
S.
,
2020
, “
Effect of Geometric Parameters on Synthetic Jet: A Review
,”
Phys. Fluids
,
32
(
3
), p.
031301
.10.1063/1.5142408
31.
Ja’fari
,
M.
,
Shojae
,
F. J.
, and
Jaworski
,
A. J.
,
2023
, “
Synthetic Jet Actuators: Overview and Applications
,”
Int. J. Thermofluids
,
20
, p.
100438
.10.1016/j.ijft.2023.100438
32.
Feero
,
M. A.
,
Lavoie
,
P.
, and
Sullivan
,
P. E.
,
2015
, “
Influence of Cavity Shape on Synthetic Jet Performance
,”
Sens. Actuators A Phys.
,
223
, pp.
1
10
.10.1016/j.sna.2014.12.004
33.
Ziadé
,
P.
,
Feero
,
M. A.
, and
Sullivan
,
P. E.
,
2018
, “
A Numerical Study on the Influence of Cavity Shape on Synthetic Jet Performance
,”
Int J. Heat Fluid Flow
,
74
, pp.
187
197
.10.1016/j.ijheatfluidflow.2018.10.001
34.
Duvigneau
,
R.
, and
Visonneau
,
M.
,
2006
, “
Optimization of a Synthetic Jet Actuator for Aerodynamic Stall Control
,”
Comput. Fluids
,
35
(
6
), pp.
624
638
.10.1016/j.compfluid.2005.01.005
35.
Yen
,
J.
, and
Ahmed
,
N. A.
,
2013
, “
Enhancing Vertical Axis Wind Turbine by Dynamic Stall Control Using Synthetic Jets
,”
J. Wind Eng. Ind. Aerodyn.
,
114
, pp.
12
17
.10.1016/j.jweia.2012.12.015
36.
Bellegoni
,
M.
,
Cotteleer
,
L.
,
Raghunathan Srikumar
,
S. K.
,
Mosca
,
G.
,
Gambale
,
A.
,
Tognotti
,
L.
,
Galletti
,
C.
, and
Parente
,
A.
,
2023
, “
An Extended SST k−ω Framework for the RANS Simulation of the Neutral Atmospheric Boundary Layer
,”
Environ. Model. Softw.
,
160
, p.
105583
.10.1016/j.envsoft.2022.105583
37.
Javadi
,
A.
, and
El-Askary
,
W. A.
,
2012
, “
Numerical Prediction of Turbulent Flow Structure Generated by a Synthetic Cross-Jet Into a Turbulent Boundary Layer
,”
Int. J. Numer. Methods Fluids
,
69
(
7
), pp.
1219
1236
.10.1002/fld.2632
38.
Kim
,
M.
,
Lee
,
B.
,
Kim
,
C.
, and
Jung
,
K. J.
,
2012
, “
Numerical Study on Flow Characteristics of Synthetic Jets With Rectangular and Circular Exits
,”
AIAA
Paper No. 2012-3049.10.2514/6.2012-3049
39.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
40.
Xiong
,
J.
,
Koshizuka
,
S.
, and
Sakai
,
M.
,
2011
, “
Turbulence Modeling for Mass Transfer Enhancement by Separation and Reattachment With Two-Equation Eddy-Viscosity Models
,”
Nucl. Eng. Des.
,
241
(
8
), pp.
3190
3200
.10.1016/j.nucengdes.2011.06.028
41.
Siemens Digital Industries Software
,
2021
, Simcenter STAR-CCM+ User Guide, Version 2021.1,
Siemens
, Plano, TX.
42.
Purtell
,
L. P.
,
Klebanoff
,
P. S.
, and
Buckley
,
F. T.
,
1981
, “
Turbulent Boundary Layer at Low Reynolds Number
,”
Phys. Fluids
,
24
(
5
), pp.
802
811
.10.1063/1.863452
43.
Mi
,
J.
,
Nathan
,
G. J.
, and
Nobes
,
D. S.
,
2001
, “
Mixing Characteristics of Axisymmetric Free Jets From a Contoured Nozzle, an Orifice Plate and a Pipe
,”
ASME J. Fluids Eng.
,
123
(
4
), pp.
878
883
.10.1115/1.1412460
44.
Kristo
,
P. J.
, and
Kimber
,
M. L.
,
2021
, “
Time-Resolved Particle Image Velocimetry Measurements of a Tandem Jet Array in a Crossflow at Low Velocity Ratios
,”
Exp. Fluids
,
62
(
4
), p. 67.10.1007/s00348-021-03159-x
45.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows,” Studying Turbulence Using Numerical Simulation Databases
,”
Proceedings of the 1988 Summer Program
, San Francisco, CA, June 20–24, pp.
193
208
.https://ntrs.nasa.gov/api/citations/19890015184/downloads/19890015184.pdf
46.
Zhou
,
J.
,
Adrian
,
R. J.
,
Balachandar
,
S.
, and
Kendall
,
T. M.
,
1999
, “
Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow
,”
J. Fluid Mech.
,
387
, pp.
353
396
.10.1017/S002211209900467X
47.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
48.
Chakraborty
,
P.
,
Balachandar
,
S.
, and
Adrian
,
R. J.
,
2005
, “
On the Relationships Between Local Vortex Identification Schemes
,”
J. Fluid Mech.
,
535
, pp.
189
214
.10.1017/S0022112005004726
49.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2005
, “
Study of Trajectories of Jets in Crossflow Using Direct Numerical Simulations
,”
J. Fluid Mech.
,
530
, pp.
81
100
. 10.1017/S0022112005003514
50.
Huang
,
L.
,
Zhao
,
K.
, and
Bennett
,
G. J.
,
2024
, “
Numerical Study of the Trajectory, Penetration, and Interaction of Single and Tandem Jets in a Crossflow Using LES
,”
J. Aerosp. Eng.
,
37
(
1
), p.
04023090
.10.1061/JAEEEZ.ASENG-5154
51.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of the Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.10.1017/S0022112097007891
You do not currently have access to this content.