Abstract

The conceptualization and development of advanced nuclear reactors encompasses challenging fluid-flow concerns that significantly impact their operational safety and efficacy. The establishment of a comprehensive numerical database focused on high-fidelity data holds promising potential in facilitating the formulation of accurate and cost-effective reduced-resolution heat transfer models. These models can be designed based on a multiscale hierarchy developed as part of the recent U.S. Department of Energy-funded Center of Excellence for Thermal Fluids Applications in Nuclear Energy, which represents a significant stride toward resolving industry-specific challenges associated with the heat transfer behavior of advanced reactors. This paper considers direct numerical simulation (DNS) of the upper plenum with discharging jets of high-temperature gas-cooled reactors (HTGR). Three isothermal cases have been considered: one for the TAMU facility at Re = 10,622 and two for the MiGaDome facility at Re = 4097. The MiGaDome cases include single-jet and double-jet configurations, both operating at the same flowrate. The low Prandtl number fluid (Helium) is considered for all simulations. First- and second-order statistics are investigated, and the agreement with experimental data improvements has been observed compared to previous large eddy simulation (LES) studies. Furthermore, proper orthogonal decomposition (POD) analysis is employed to reveal and characterize the flow patterns in the upper plenum across various configurations and operating conditions. The energy transfer pathway was also discovered in the MiGaDome double-jet configuration. The generated high-fidelity DNS data will be utilized alongside data-driven methods to improve turbulence modeling closures.

References

1.
Goto
,
H.
,
2022
,
High-Temperature Gas-Cooled Reactors and Industrial Heat Applications
,
Nuclear Energ Agency
, Boulogne-Billancourt, France.
2.
Nguyen
,
T.
,
Reger
,
D.
,
Merzari
,
E.
,
Yuan
,
H.
,
Dai
,
D.
, and
Jackson
,
B.
,
2023
, “
Large Eddy Simulation of Convective Heat Transfer in a Random Pebble Bed Using the Spectral Element Method
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
145
(
12
), p.
121001
.10.1115/1.4062940
3.
Zhang
,
Z.
,
Dong
,
Y.
,
Li
,
F.
,
Huang
,
X.
,
Zheng
,
Y.
,
Dong
,
Z.
,
Zhang
,
H.
,
Chen
,
Z.
, and
Li
,
X.
,
2023
, “
Loss-of-Cooling Tests to Verify Inherent Safety Feature in the World?s First HTR-PM Nuclear Power Plant
,”
Joule
,
8
(
7
), pp.
2146
2159
.10.1016/j.joule.2024.06.014
4.
Ball
,
S. J.
,
Corradini
,
M.
,
Fisher
,
S. E.
,
Gauntt
,
R.
,
Geffraye
,
G.
,
Gehin
,
J. C.
,
Hassan
,
Y.
, et al.,
2007
, “
Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTS) Volume 2: Accident and Thermal Fluids Analysis PIRTs
,” Oak Ridge National Laboratory, Oak Ridge, TN.
5.
Mccreery
,
G. E.
, and
Condie
,
K. G.
,
2006
, “
Experimental Modeling of VHTR Plenum Flows During Normal Operation and Pressurized Conduction Cooldown
,”
Idaho National Laboratory
,
Idaho Falls, ID
, Report No. INL/EXT-06-11760.
6.
Park
,
J. H.
,
2016
, “
Natural Circulation in the Upper Plenum of a Scaled Model of a Very High Temperature Reactor in the Event of Loss-of-Coolant Accident
,” Texas A&M University, College Station, TX, accessed Oct. 2024, https://hdl.handle.net/1969.1/157998
7.
Alwafi
,
A.
,
Nguyen
,
T.
,
Hassan
,
Y.
, and
Anand
,
N. K.
,
2019
, “
Time-Resolved Particle Image Velocimetry Measurements of a Single Impinging Jet in the Upper Plenum of a Scaled Facility of High Temperature Gas-Cooled Reactors
,”
Int. J. Heat Fluid Flow
,
76
(
113
), pp.
113
129
.10.1016/j.ijheatfluidflow.2019.02.003
8.
Ball
,
C.
,
Fellouah
,
H.
, and
Pollard
,
A.
,
2012
, “
The Flow Field in Turbulent Round Free Jets
,”
Prog. Aerosp. Sci.
,
50
(
1
), pp.
1
26
.10.1016/j.paerosci.2011.10.002
9.
Fellouah
,
H.
,
Ball
,
C.
, and
Pollard
,
A.
,
2009
, “
Reynolds Number Effects Within the Development Region of a Turbulent Round Free Jet
,”
Int. J. Heat Mass Transfer
,
52
(
17–18
), pp.
3943
3954
.10.1016/j.ijheatmasstransfer.2009.03.029
10.
Fiedler
,
H. E.
,
Control of Free Turbulent Shear Flows
,
Springer
,
Berlin, Heidelberg
, pp.
335
429
.
11.
San
,
J.-Y.
, and
Chen
,
J.-J.
,
2014
, “
Effects of Jet-to-Jet Spacing and Jet Height on Heat Transfer Characteristics of an Impinging Jet Array
,”
Int. J. Heat Mass Transfer
,
71
, pp.
8
17
.10.1016/j.ijheatmasstransfer.2013.11.079
12.
Tanaka
,
E.
,
1970
, “
The Interference of Two-Dimensional Parallel Jets: 1st Report, Experiments on Dual Jet
,”
JSME
,
13
(
56
), pp.
272
280
.10.1299/jsme1958.13.272
13.
Lin
,
Y. F.
, and
Sheu
,
M. J.
,
1991
, “
Interaction of Parallel Turbulent Plane Jets
,”
AIAA J.
,
29
(
9
), pp.
1372
1373
.10.2514/3.10749
14.
Marsters
,
G.
,
1977
, “
Interaction of Two Plane, Parallel Jets
,”
AIAA J.
,
15
(
12
), pp.
1756
1762
.10.2514/3.60841
15.
Miller
,
D.
, and
Comings
,
E.
,
1960
, “
Force-Momentum Fields in a Dual-Jet Flow
,”
J. Fluid Mech.
,
7
(
2
), pp.
237
256
.10.1017/S0022112060001468
16.
Acierno
,
J.
, and
Merzari
,
E.
,
2022
, “
Large Eddy Simulation of Jet Interaction
,”
Advances in Thermal Hydraulics (ATH 2022)
, American Nuclear Society (ANS),
Anaheim, CA
.
17.
Mao
,
J.
,
Che
,
S.
,
Petrov
,
V.
, and
Manera
,
A.
,
2024
, “
Benchmark Experiments for Turbulent Mixing in the Scaled-Down Upper Plenum of High-Temperature Gas-Cooled Reactors Under Accident Scenario
,”
Nucl. Sci. Eng.
,
198
(
7
), pp.
1371
1385
.10.1080/00295639.2023.2186726
18.
Che
,
S.
,
Mao
,
J.
,
Sun
,
X.
,
Manera
,
A.
, and
Petrov
,
V.
,
2022
, “
Design of High-Resolution Experiments for Extended LOFC Accidents in HTGRs
,”
19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19)
, Belgium, Mar.
6
11
.
19.
Vegendia
,
P.
, and
Hu
,
R.
,
2019
, “
Modeling and Simulation of Deteriorated Turbulent Heat Transfer in Wall Heated Cylindrical Tube
,”
ASME J. Verif. Valid. Uncert.
, 4(3), p.
031006
.10.1115/1.4045522
20.
Vegendia
,
P.
,
Liu
,
Y.
,
Hu
,
R.
, and
Zou
,
L.
,
2020
, “
3D CFD Model Validation Using Benchmark Data of 1/16th Scaled VHTR Upper Plenum and Development of Wall Heat-Transfer Correlation for Laminar Flow
,”
Argonne National Laboratory
,
Argonne, IL
, Report No. ANL/NSE-20/11.
21.
Leite
,
V. C.
,
Merzari
,
E.
,
Mao
,
J.
,
Petrov
,
V.
, and
Manera
,
A.
,
2024
, “
High-Fidelity Simulation of Mixing Phenomena in Large Enclosures
,”
Nucl. Sci. Eng.
,
198
(
7
), pp.
1386
1403
.10.1080/00295639.2023.2186159
22.
Manera
,
A.
,
Petrov
,
V.
,
Iskhakov
,
A.
,
Bolotnov
,
I.
,
Dihn
,
N.
,
Baglietto
,
E.
,
Merzari
,
E.
, et al.,
2022
, “
Challenge Problem 3: Benchmark Specifications for Mixing in Large Enclosure and Thermal Stratification
,”
Argonne National Laboratory
, Lemont, IL, Report No. ANL/NSE-22/8.
23.
Mao
,
J.
,
Petrov
,
V.
, and
Manera
,
A.
,
2022
, “
High-Resolution Experiments on Flow Mixing in the Scaled-Down Upper Plenum of High-Temperature Gas-Cooled Reactors Under Accident Scenario
,”
Proceedings of International Topical Meeting on Advances in Thermal Hydraulics 2022
(
ATH2022
), Anaheim, CA, June 12–16, pp.
374
387
.10.13182/T126-37683
24.
Nguyen
,
T.
,
Merzari
,
E.
,
Leite
,
V.
, and
Jackson
,
B.
,
2024
, “
Direct Numerical Simulation of Mixing Phenomena in the Upper Plenum of Advanced Reactors
,”
ASME
Paper No. FEDSM2024-132524.10.1115/FEDSM2024-132524
25.
Nguyen
,
T.
,
2023
, “
High Fidelity Simulation of Buoyancy-Driven Fluid Flow in Flouride Salt-Cooled High Temperature Reactors Using the Spectral Element Method
,”
Ph.D thesis
, The Pennsylvania State University, University Park, PA.https://etda.libraries.psu.edu/files/final_submissions/28924
26.
Holmes
,
P.
,
Lumley
,
J.
, and
Berkooz
,
G.
,
1996
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge
.
27.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. PART I: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
28.
Fischer
,
P.
,
Kerkemeier
,
S.
,
Min
,
M.
,
Lan
,
Y.-H.
,
Phillips
,
M.
,
Rathnayake
,
T.
,
Merzari
,
E.
, et al., “
NekRS, a GPU-Accelerated Spectral Element NavierStokes Solver
,” arXiv:2104.05829.
29.
Nek5000
,
2020
, see http://nek5000.github.io/NekDoc/problem_setup/filter.html for “
Nek5000/NekRS documentation
,”.
30.
Patera
,
A. T.
,
1984
, “
A Spectral Element Method for Fluid Dynamics: Laminar Flow in a Channel Expansion
,”
J. Comput. Phys.
,
54
(
3
), pp.
468
488
.10.1016/0021-9991(84)90128-1
31.
Fischer
,
P.
,
Merzari
,
E.
,
Min
,
M.
,
Kerkemeier
,
S.
,
Lan
,
Y. H.
,
Phillips
,
M.
,
Rathnayake
,
T.
, et al.,
2021
, “
Highly Optimized Full-Core Reactor Simulations on Summit
,” arXiv:2110.01716.
32.
Tomboulides
,
A. G.
,
Israeli
,
M.
, and
Karniadakis
,
G. E.
,
1989
, “
Efficient Removal of Boundary-Divergence Errors in Time-Splitting Methods
,”
Sci. Comput.
,
4
, pp.
291
308
.10.1007/BF01061059
33.
Geuzaine
,
C.
, and
Remacle
,
J.-F.
,
2009
, “
Gmsh: A Three-Dimensional Finite Element Mesh Generator With Built-in Pre- and Post-Processing Facilities
,”
Int. J. Numer. Methods Eng.
,
79
(
11
), pp.
1309
1331
.10.1002/nme.2579
34.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press, Cambridge, UK
.10.1017/CBO9780511616938
35.
Trefethen
,
L. N.
, and
Bau
,
D.
,
1997
,
Numerical Linear Algebra
,
SIAM
, Philadelphia, PA.
You do not currently have access to this content.