Abstract

Biological studies have shown that schooling behavior benefits fish's swimming performance. Particularly, side-by-side, or phalanx, formation, combined with the synchronization of undulation of the neighbors, was shown to allow the group to sustain fast incoming flow. In this work, the hydrodynamic interactions between neighbors in a phalanx school are studied through three-dimensional (3D) flow simulation. Trout-like computational models, composed of trunk (TK), caudal fin (CF), and median dorsal and anal fins (DF and AF), are used with undulatory kinematics prescribed using a traveling-wave equation. An immersed-boundary method direct numerical simulation code is used. Three trout-like models are arranged in a dense phalanx formation so that the middle fish would interact strongly with both its neighbor. The undulation of all the fish are synchronized, with the middle fish undulating either in phase or completely out of phase with its two neighbors, to examine the hydrodynamic interaction in a phalanx school in both in-phase and anti-phase modes. Results show significantly enhanced thrust though at the cost of slightly increased power consumption through anti-phase interaction, which enhanced the 3D pressure fields and momentum of the flow around neighboring CF. The wake of each fish also interacted strongly, producing expanding vortex rings and enhanced wake jets. The addition of median fins to the school additional enhanced the caudal-fin thrust through fin–fin interaction.

References

1.
Herskin
,
J.
, and
Steffensen
,
J. F.
,
1998
, “
Energy Savings in Sea Bass Swimming in a School: Measurements of Tail Beat Frequency and Oxygen Consumption at Different Swimming Speeds
,”
J. Fish Biol.
,
53
(
2
), pp.
366
376
.10.1111/j.1095-8649.1998.tb00986.x
2.
Killen
,
S. S.
,
Marras
,
S.
,
Steffensen
,
J. F.
, and
Mckenzie
,
D. J.
,
2012
, “
Aerobic Capacity Influences the Spatial Position of Individuals Within Fish Schools
,”
Proc. R. Soc. B: Biol. Sci.
,
279
(
1727
), pp.
357
364
.10.1098/rspb.2011.1006
3.
Zhang
,
Y.
, and
Lauder
,
G. V.
,
2024
, “
Energy Conservation by Collective Movement in Schooling Fish
,”
eLife
,
12
, p.
RP90352
.10.7554/eLife.90352
4.
Zhang
,
Y.
, and
Lauder
,
G. V.
,
2023
, “
Energetics of Collective Movement in Vertebrates
,”
J. Exp. Biol.
,
226
(
20
), p.
jeb245617
.10.1242/jeb.245617
5.
Marras
,
S.
,
Killen
,
S. S.
,
Lindström
,
J.
,
McKenzie
,
D. J.
,
Steffensen
,
J. F.
, and
Domenici
,
P.
,
2015
, “
Fish Swimming in Schools Save Energy Regardless of Their Spatial Position
,”
Behav. Ecol. Sociobiol.
,
69
(
2
), pp.
219
226
.10.1007/s00265-014-1834-4
6.
Partridge
,
B. L.
,
1981
, “Internal Dynamics and the Interrelations of Fish in Schools,”
J. Comp. Physiol.
, 144, pp.
313
325
.10.1007/BF00612563
7.
Partridge
,
B. L.
,
Pitcher
,
T.
,
Cullen
,
J. M.
, and
Wilson
,
J.
,
1980
, “
The Three-Dimensional Structure of Fish Schools
,”
Behav Ecol Sociobiol.
, 6, pp.
277
288
.10.1007/BF00292770
8.
Ashraf
,
I.
,
Godoy-Diana
,
R.
,
Halloy
,
J.
,
Collignon
,
B.
, and
Thiria
,
B.
,
2016
, “
Synchronization and Collective Swimming Patterns in Fish (Hemigrammus Bleheri)
,”
J. R. Soc. Interface
,
13
(
123
), p.
20160734
.10.1098/rsif.2016.0734
9.
Ashraf
,
I.
,
Bradshaw
,
H.
,
Ha
,
T. T.
,
Halloy
,
J.
,
Godoy-Diana
,
R.
, and
Thiria
,
B.
,
2017
, “
Simple Phalanx Pattern Leads to Energy Saving in Cohesive Fish Schooling
,”
Proc. Natl. Acad. Sci. U.S.A.
,
114
(
36
), pp.
9599
9604
.10.1073/pnas.1706503114
10.
Dewey
,
P. A.
,
Quinn
,
D. B.
,
Boschitsch
,
B. M.
, and
Smits
,
A. J.
,
2014
, “
Propulsive Performance of Unsteady Tandem Hydrofoils in a Side-by-Side Configuration
,”
Phys. Fluids
,
26
(
4
), p.
041903
.10.1063/1.4871024
11.
Dong
,
G. J.
, and
Lu
,
X. Y.
,
2007
, “
Characteristics of Flow Over Traveling Wavy Foils in a Side-by-Side Arrangement
,”
Phys. Fluids
,
19
(
5
), p.
057107
.10.1063/1.2736083
12.
Bao
,
Y.
,
Zhou
,
D.
,
Tao
,
J. J.
,
Peng
,
Z.
,
Zhu
,
H. B.
,
Sun
,
Z. L.
, and
Tong
,
H. L.
,
2017
, “
Dynamic Interference of Two Anti-Phase Flapping Foils in Side-by-Side Arrangement in an Incompressible Flow
,”
Phys. Fluids
,
29
(
3
), p.
033601
.10.1063/1.4978301
13.
Pan
,
Y.
,
Zhang
,
W.
,
Kelly
,
J.
, and
Dong
,
H.
,
2024
, “
Unraveling Hydrodynamic Interactions in Fish Schools: A Three-Dimensional Computational Study of In-Line and Side-by-Side Configurations
,”
Phys. Fluids
,
36
(
8
), p.
081909
.10.1063/5.0201965
14.
Li
,
G.
,
Kolomenskiy
,
D.
,
Liu
,
H.
,
Thiria
,
B.
, and
Godoy-Diana
,
R.
,
2019
, “
On the Energetics and Stability of a Minimal Fish School
,”
PLoS One
,
14
, p.
e0215265
.10.1371/journal.pone.0215265
15.
Wei
,
C.
,
Hu
,
Q.
,
Li
,
S.
, and
Shi
,
X.
,
2023
, “
Hydrodynamic Interactions and Wake Dynamics of Fish Schooling in Rectangle and Diamond Formations
,”
Ocean Eng.
,
267
, p.
113258
.10.1016/j.oceaneng.2022.113258
16.
Pan
,
Y.
, and
Dong
,
H.
,
2020
, “
Computational Analysis of Hydrodynamic Interactions in a High-Density Fish School
,”
Phys. Fluids
,
32
(
12
), p.
121901
.10.1063/5.0028682
17.
Pan
,
Y.
, and
Dong
,
H.
,
2022
, “
Effects of Phase Difference on Hydrodynamic Interactions and Wake Patterns in High-Density Fish Schools
,”
Phys. Fluids
,
34
(
11
), p.
111902
.10.1063/5.0113826
18.
Kelly
,
J.
,
Pan
,
Y.
,
Menzer
,
A.
, and
Dong
,
H.
,
2023
, “
Hydrodynamics of Body-Body Interactions in Dense Synchronous Elongated Fish Schools
,”
Phys. Fluids
,
35
(
4
), p.
041906
.10.1063/5.0142950
19.
Quinn
,
D. B.
,
Lauder
,
G. V.
, and
Smits
,
A. J.
,
2014
, “
Flexible Propulsors in Ground Effect
,”
Bioinspiration Biomimetics
,
9
(
3
), p.
036008
.10.1088/1748-3182/9/3/036008
20.
Quinn
,
D. B.
,
Moored
,
K. W.
,
Dewey
,
P. A.
, and
Smits
,
A. J.
,
2014
, “
Unsteady Propulsion Near a Solid Boundary
,”
J. Fluid Mech.
,
742
, pp.
152
170
.10.1017/jfm.2013.659
21.
Liu
,
G.
,
Ren
,
Y.
,
Dong
,
H.
,
Akanyeti
,
O.
,
Liao
,
J. C.
, and
Lauder
,
G. V.
,
2017
, “
Computational Analysis of Vortex Dynamics and Performance Enhancement Due to Body-Fin and Fin-Fin Interactions in Fish-Like Locomotion
,”
J. Fluid Mech.
,
829
, pp.
65
88
.10.1017/jfm.2017.533
22.
Guo
,
J.
,
Han
,
P.
,
Zhang
,
W.
,
Wang
,
J.
,
Lauder
,
G. V.
,
Di Santo
,
V.
, and
Dong
,
H.
,
2023
, “
Vortex Dynamics and Fin-Fin Interactions Resulting in Performance Enhancement in Fishlike Propulsion
,”
Phys. Rev. Fluids
,
8
(
7
), p.
073101
.10.1103/PhysRevFluids.8.073101
23.
Han
,
P.
,
Lauder
,
G. V.
, and
Dong
,
H.
,
2020
, “
Hydrodynamics of Median-Fin Interactions in Fish-Like Locomotion: Effects of Fin Shape and Movement
,”
Phys. Fluids
,
32
(
1
), p.
011902
.10.1063/1.5129274
24.
Pan
,
Y.
, and
Dong
,
H.
,
2023
, “
Hydrodynamic Performance and Wake Topology of Schooling Fish in Three-Dimensional Formations
,”
ASME J. Fluids Eng.
,
145
, p.
060905
.10.1115/1.4057072
25.
Feng
,
Z. G.
,
Gatewood
,
J.
, and
Michaelides
,
E. E.
,
2021
, “
Wall Effects on the Flow Dynamics of a Rigid Sphere in Motion
,”
ASME J. Fluids Eng.
,
143
(
8
), p.
081106
.10.1115/1.4051215
26.
Khandelwal
,
P.
,
Subburaj
,
R.
, and
Vengadesan
,
S.
,
2020
, “
Shear Layer Interactions With Fluid–Fluid Interface in the Wake of an Elliptical Cylinder
,”
ASME J. Fluids Eng.
,
142
(
8
), p.
081301
.10.1115/1.4046770
27.
Zhang
,
W.
,
Pan
,
Y.
,
Wang
,
J.
,
Di Santo
,
V.
,
Lauder
,
G. V.
, and
Dong
,
H.
,
2023
, “
An Efficient Treetopological Local Mesh Refinement on Cartesian Grids for Multiple Moving Objects in Incompressible Flow
,”
J. Comput. Phys.
,
479
, p.
111983
.10.1016/j.jcp.2023.111983
28.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
29.
Zhao
,
C.
,
Yang
,
Y.
,
Zhang
,
T.
,
Dong
,
H.
, and
Hou
,
G.
,
2021
, “
A Sharp Interface Immersed Boundary Method for Flow-Induced Noise Prediction Using Acoustic Perturbation Equations
,”
Comput. Fluids
,
227
, p.
105032
.10.1016/j.compfluid.2021.105032
30.
Han
,
P.
,
Pan
,
Y.
,
Liu
,
G.
, and
Dong
,
H.
,
2022
, “
Propulsive Performance and Vortex Wakes of Multiple Tandem Foils Pitching In-Line
,”
J. Fluids Struct.
,
108
, p.
103422
.10.1016/j.jfluidstructs.2021.103422
31.
Guo
,
J.
,
Han
,
P.
,
Pan
,
Y.
, and
Dong
,
H.
,
2023
, “
Lateral Stability and Wake Analysis of Tri-Foil System Pitching In-Line
,”
AIAA
Paper No. 2023-1973.10.2514/6.2023-1973
32.
Guo
,
J.
, and
Dong
,
H.
,
2024
, “
Hydrodynamics of Active Fin Control in Fish-Like Swimming
,”
ASME
Paper No. IMECE2024-145558.10.1115/IMECE2024-145558
33.
Boudis
,
A.
,
Bayeul-Lainé
,
A. C.
,
Benzaoui
,
A.
,
Oualli
,
H.
,
Guerri
,
O.
, and
Coutier-Delgosha
,
O.
,
2019
, “
Numerical Investigation of the Effects of Nonsinusoidal Motion Trajectory on the Propulsion Mechanisms of a Flapping Airfoil
,”
ASME J. Fluids Eng.
,
141
(
4
), p.
041106
.10.1115/1.4042175
34.
Shaik
,
M.
, and
Hazarika
,
S. M.
,
2022
, “
Numerical Investigation of Flow Over Oscillating Cambered Foil at Low Reynolds Number
,”
ASME J. Fluids Eng.
,
144
(
7
), p.
071303
.10.1115/1.4053556
35.
Kelly
,
J. M.
,
Khalid
,
M. S. U.
,
Han
,
P.
, and
Dong
,
H.
,
2023
, “
Geometric Characteristics of Flapping Foils for Enhanced Propulsive Efficiency
,”
ASME J. Fluids Eng.
,
145
(
6
), p.
061104
.10.1115/1.4057018
36.
Lauder
,
G. V.
,
2000
, “
Function of the Caudal Fin During Locomotion in Fishes: Kinematics, Flow Visualization, and Evolutionary Patterns
,”
Am. Zool.
,
40
(
1
), pp.
101
122
.10.1093/icb/40.1.101
37.
Lighthill
,
M. J.
,
1970
, “
Aquatic Animal Propulsion of High Hydromechanical Efficiency
,”
J. Fluid Mech.
, 44(2), pp.
265
301
.10.1017/S0022112070001830
38.
Seo
,
J. H.
, and
Mittal
,
R.
,
2022
, “
Improved Swimming Performance in Schooling Fish Via Leading-Edge Vortex Enhancement
,”
Bioinspiration Biomimetics
,
17
(
6
), p.
066020
.10.1088/1748-3190/ac9bb4
You do not currently have access to this content.