Abstract

An automotive diffuser is an open channel within the underbody of a vehicle that features a diverging ramp in the aft section. The performance of a diffuser is sensitive to ground effect where decreases in ride height result in increases in downforce. However, below a critical value, any further reduction in ride height results in a significant loss of downforce. Previous experimental investigations demonstrated that the dominant flow feature within underbody diffuser flows is a pair of counter-rotating longitudinal vortices, and the resulting downforce behavior is directly linked to the structure of the longitudinal vortex pair. This study investigates the effect of ride height on the behavior of the longitudinal vortex pair within an underbody diffuser flow in ground effect. The unsteady flow past a diffuser-equipped bluff body with a 17deg diffuser ramp angle is simulated using large eddy simulation with wall-stress modeling, commonly referred to as wall modeled large eddy simulation (WMLES). The flow Reynolds number based on body length is 1.75×106. Numerical simulations are performed with OpenFOAM and WMLES is implemented with libWallModelledLES, a third-party WMLES library for OpenFOAM. Results show that the mean centerline surface pressure distributions along the underbody match well with experiments. Visualization of the vortices with isosurfaces of the Q-criterion demonstrates that the longitudinal vortices experience a spiral-type vortex breakdown which propagates upstream with decreasing ride height.

References

1.
Sovran
,
G.
,
1994
, “
The Kinematic and Fluid-Mechanic Boundary Conditions in Underbody Flow Simulation
,”
Proceedings of the CNR-Pininfarina Workshop on Wind Tunnel Simulation of Ground Effect
, Turin, Italy, May.
2.
Zhang
,
X.
,
Toet
,
W.
, and
Zerihan
,
J.
,
2006
, “
Ground Effect Aerodynamics of Race Cars
,”
ASME Appl. Mech. Rev.
,
59
(
1
), pp.
33
49
.10.1115/1.2110263
3.
Ehirim
,
O. H.
,
Knowles
,
K.
, and
Saddington
,
A. J.
,
2019
, “
A Review of Ground-Effect Diffuser Aerodynamics
,”
ASME J. Fluids Eng.
,
141
(
2
), p.
020801
.10.1115/1.4040501
4.
Cooper
,
K. R.
,
Bertenyi
,
T.
,
Dutil
,
G.
,
Syms
,
J.
, and
Sovran
,
G.
,
1998
, “
The Aerodynamic Performance of Automotive Underbody Diffusers
,”
SAE Trans.
,
107
, pp.
150
179
.10.4271/980030
5.
Senior
,
A. E.
, and
Zhang
,
X.
,
2001
, “
The Force and Pressure of a Diffuser-Equipped Bluff Body in Ground Effect
,”
ASME J. Fluids Eng.
,
123
(
1
), pp.
105
111
.10.1115/1.1340637
6.
Zhang
,
X.
,
Senior
,
A.
, and
Ruhrmann
,
A.
,
2004
, “
Vortices Behind a Bluff Body With an Upswept Aft Section in Ground Effect
,”
Int. J. Heat Fluid Flow
,
25
(
1
), pp.
1
9
.10.1016/j.ijheatfluidflow.2003.11.002
7.
Ehirim
,
O. H.
,
Knowles
,
K.
,
Saddington
,
A. J.
, and
Finnis
,
M. V.
,
2018
, “
Aerodynamics of a Convex Bump on a Ground-Effect Diffuser
,”
ASME J. Fluids Eng.
,
140
(
9
), p.
091102
.10.1115/1.4039518
8.
George
,
A. R.
,
1981
, “
Aerodynamic Effects of Shape, Camber, Pitch, and Ground Proximity on Idealized Ground-Vehicle Bodies
,”
ASME J. Fluids Eng.
,
103
(
4
), pp.
631
637
.10.1115/1.3241783
9.
George
,
A. R.
, and
Donis
,
J. E.
,
1983
, “
Flow Patterns, Pressures, and Forces on the Underside of Idealized Ground Effect Vehicles
,”
Proceedings of the ASME Fluids Engineering Division Symposium on Aerodynamics of Transportation-II
, Boston, MA, Nov. 13–18, pp.
69
79
.https://www.researchgate.net/publication/292650936_Flow_patterns_pressures_and_forces_on_the_underside_of_idealized_ground_effect_vehicles
10.
Hall
,
M. G.
,
1972
, “
Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
4
(
1
), pp.
195
218
.10.1146/annurev.fl.04.010172.001211
11.
Senior
,
A. E.
,
2002
, “
The Aerodynamics of a Diffuser Equipped Bluff Body in Ground Effect
,”
Ph.D. thesis
,
University of Southampton
,
Southampton
, UK.https://eprints.soton.ac.uk/47113/
12.
Marklund
,
J.
, and
Lofdahl
,
L.
,
2009
, “
Drag Reduction of a Simple Bluff Body by Changing the Rear End and Use the Ground Effect
,”
ASME
Paper No. FEDSM2009-7850210.1115/FEDSM2009-78502.
13.
Marklund
,
J.
,
2013
, “
Under-Body and Diffuser Flows of Passenger Vehicles
,”
Ph.D. thesis
,
Chalmers University of Technology
,
Göteborg, Sweden
.https://publications.lib.chalmers.se/records/fulltext/177366/177366.pdf
14.
Mayoral
,
S.
,
Weiss
,
H.
, and
Edirisinghe
,
R.
,
2019
, “
On the Relationship Between the Vortices From an Underbody Diffuser in Ground-Effect and the Resulting Downforce
,”
SAE
Technical Paper No. 2019-01-0650.10.4271/2019-01-0650
15.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-0439.10.2514/6.92-0439
16.
Puglisevich
,
L. S.
, and
Page
,
G.
,
2011
, “
Large Eddy Simulation of the Flow Around a Diffuser-Equipped Bluff Body in Ground Effect
,”
ASME
Paper No. IMECE2011-6267310.1115/IMECE2011-62673.
17.
Puglisevich
,
L. S.
,
2013
, “
Large Eddy Simulation for Automotive Vortical Flows in Ground Effect
,”
Ph.D. thesis
,
Loughborough University
,
Loughborough, UK
.https://repository.lboro.ac.uk/articles/thesis/Large_eddy_simulation_for_automotive_vortical_flows_in_ground_effect/9212012?file=16784921
18.
Ehirim
,
O. H.
,
2017
, “Aerodynamics and Performance Enhancement of a Ground-Effect Diffuser,”
Ph.D. thesis
, Cranfield University, Bedford, UK.
19.
Shur
,
M. L.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2008
, “
A Hybrid RANS-LES Approach With Delayed-DES and Wall-Modelled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
20.
Guilmineau
,
E.
,
Deng
,
G.
, and
Wackers
,
J.
,
2011
, “
Numerical Simulation With a DES Approach for Automotive Flows
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
807
816
.10.1016/j.jfluidstructs.2011.03.010
21.
Ashton
,
N.
, and
Revell
,
A. J.
,
2015
, “
Comparison of RANS and DES Methods for the DrivAer Automotive Body
,”
SAE
Technical Paper No. 2015-01-1538.
22.
Ashton
,
N.
,
West
,
A.
,
Lardeau
,
S.
, and
Revell
,
A. J.
,
2016
, “
Assessment of RANS and DES Methods for Realistic Automotive Models
,”
Comput. Fluids
,
128
, pp.
1
15
.10.1016/j.compfluid.2016.01.008
23.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
24.
Mukha
,
T.
,
Rezaeiravesh
,
S.
, and
Liefvendahl
,
M.
,
2019
, “
A Library for Wall-Modelled Large-Eddy Simulation Based on OpenFOAM Technology
,”
Comput. Phys. Commun.
,
239
, pp.
204
224
.10.1016/j.cpc.2019.01.016
25.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
26.
Larsson
,
J.
,
Kawai
,
S.
,
Bodart
,
J.
, and
Bermejo-Moreno
,
I.
,
2016
, “
Large Eddy Simulation With Modeled Wall-Stress: Recent Progress and Future Directions
,”
Mech. Eng. Rev.
,
3
(
1
), pp. 1–23.10.1299/mer.15-00418
27.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.10.1063/1.3676783
28.
Yang
,
X. I. A.
,
Park
,
G. I.
, and
Moin
,
P.
,
2017
, “
Log-Layer Mismatch and Modeling of the Fluctuating Wall Stress in Wall-Modeled Large-Eddy Simulations
,”
Phys. Rev. Fluids
,
2
(
10
), p.
104601
.10.1103/PhysRevFluids.2.104601
29.
Mayoral
,
S.
, and
Massis
,
A.
,
2023
, “
Wall-Modeled Large Eddy Simulation of Flow Past an Ahmed Body With a 25° Slant Angle
,”
ASME
Paper No. IMECE2023-113847.10.1115/IMECE2023-113847
30.
Pope
,
S. B.
,
2000
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
31.
Werner
,
H.
, and
Wengle
,
H.
,
1993
, “
Large-Eddy Simulation of Turbulent Flow Over and Around a Cube in a Plate Channel
,”
Turbulent Shear Flows 8
,
Springer
,
Berlin, Germany
.
32.
Spalding
,
D. B.
,
1961
, “
A Single Formula for the Law of the Wall
,”
ASME J. Appl. Mech.
,
28
(
3
), pp.
455
458
.10.1115/1.3641728
33.
Wilhelm
,
S.
,
Jacob
,
J.
, and
Sagaut
,
P.
,
2018
, “
An Explicit Power-Law-Based Wall Model for Lattice Boltzmann Method-Reynolds-Averaged Numerical Simulations of the Flow Around Airfoils
,”
Phys. Fluids
,
30
(
6
), p.
065111
.10.1063/1.5031764
34.
Jakirlic
,
S.
,
Jester-Zürker
,
R.
, and
Tropea
,
C.
,
2001
,
9th ERCOFTAC/IAHR/COST Workshop on Refined Turbulence Modelling
, Darmstadt University of Technology, Germany, pp. 1–8.
35.
Serre
,
E.
,
Minguez
,
M.
,
Pasquetti
,
R.
,
Guilmineau
,
E.
,
Deng
,
G. B.
,
Kornhaas
,
M.
,
Schäfer
,
M.
,
Fröhlich
,
J.
,
Hinterberger
,
C.
, and
Rodi
,
W.
,
2013
, “
On Simulating the Turbulent Flow Around the Ahmed Body: A French-German Collaborative Evaluation of LES and DES
,”
Comput. Fluids
,
78
, pp.
10
23
.10.1016/j.compfluid.2011.05.017
36.
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Flow Around a Simplified Car, Part 1: Large Eddy Simulation
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
907
918
.10.1115/1.1989371
37.
Krajnović
,
S.
, and
Davidson
,
L.
,
2005
, “
Flow Around a Simplified Car, Part 2: Understanding the Flow
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
919
928
.10.1115/1.1989372
38.
Kawai
,
S.
, and
Larsson
,
J.
,
2012
, “
Wall-Modeling in Large Eddy Simulation: Length Scales, Grid Resolution, and Accuracy
,”
Phys. Fluids
,
24
(
1
), p.
015105
.10.1063/1.3678331
39.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
40.
Jeong
,
J.
, and
Hussain
,
F.
,
1995
, “
On the Identification of a Vortex
,”
J. Fluid Mech.
,
285
, pp.
69
94
.10.1017/S0022112095000462
41.
Ahrens
,
J.
,
Geveci
,
B.
, and
Law
,
C.
,
2005
, “
ParaView: An End-User Tool for Large Data Visualization
,”
Visualization Handbook
,
Elsevier
, Oxford, UK.
42.
Leibovich
,
S.
,
1978
, “
The Structure of Vortex Breakdown
,”
Annu. Rev. Fluid Mech.
,
10
(
1
), pp.
221
246
.10.1146/annurev.fl.10.010178.001253
43.
Lucca-Negro
,
O.
, and
O’Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.10.1016/S0360-1285(00)00022-8
44.
Michard
,
M.
,
Graftieaux
,
L.
,
Lollini
,
L.
, and
Grosjean
,
N.
,
1997
, “
Identification of Vortical Structures by a Non Local Criterion–Application to PIV Measurements and DNS-LES Results of Turbulent Rotating Flows
,”
Proceedings of the 11th Symposium on Turbulent Shear Flows
,
Grenoble
,
France
, Sept. 8–10, pp.
25
28
.
45.
Graftieaux
,
L.
,
Michard
,
M.
, and
Grosjean
,
N.
,
2001
, “
Combining PIV, POD and Vortex Identification Algorithms for the Study of Unsteady Turbulent Swirling Flows
,”
Meas. Sci. Technol.
,
12
(
9
), pp.
1422
1429
.10.1088/0957-0233/12/9/307
46.
Ranjan
,
R.
,
Aultman
,
M.
, and
Gaitonde
,
D.
,
2020
, “
Mean Flowfield Evolution With Upsweep Angle in a Simulated Cargo Fuselage Aftbody
,”
J. Aircr.
,
57
(
6
), pp.
1156
1169
.10.2514/1.C035860
You do not currently have access to this content.