Abstract

In this paper, we study numerically the role of fiber length and flexibility on the orientational dynamics of slender fibers in turbulent channel flow. We consider fibers of different flexibility at varying aspect ratio, up to lengths being comparable to the channel height. These fibers are constructed by constraining a large number of sub-Kolmogorov rods in a single chain, alongside a bending stiffness torque that allows to prescribe a finite value of the fiber rigidity. To perform our analysis, we carried out a series of one-way coupled direct numerical simulations of a fiber-laden channel flow at fixed shear Reynolds number: Reτ=300, based on the half height of the channel. By calculating the orientational statistics of the suspended fibers, we find that shorter fibers, with length O(101) when normalized by the channel half height, tend to exhibit a nearly-isotropic orientation distribution near the channel center, as would fibers suspended in homogeneous isotropic turbulence. As the fiber length is increased (up to values comparable to the channel half height), however, deviations from the isotropic orientation distribution become more and more significant. When the fibers are more rigid, these deviations are dampened and it is also observed that the tumbling rate of the fiber is lowered on average.

References

1.
Voth
,
G. A.
, and
Soldati
,
A.
,
2017
, “
Anisotropic Particles in Turbulence
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
249
276
.10.1146/annurev-fluid-010816-060135
2.
Hale
,
R. C.
,
Seeley
,
M. E.
,
La Guardia
,
M. J.
,
Mai
,
L.
, and
Zeng
,
E. Y.
,
2020
, “
A Global Perspective on Microplastics
,”
J. Geophys. Res.: Oceans
,
125
(
1
), p.
e2018JC014719
.10.1029/2018JC014719
3.
Brouzet
,
C.
,
Guiné
,
R.
,
Dalbe
,
M.-J.
,
Favier
,
B.
,
Vandenberghe
,
N.
,
Villermaux
,
E.
, and
Verhille
,
G.
,
2021
, “
Laboratory Model for Plastic Fragmentation in the Turbulent Ocean
,”
Phys. Rev. Fluids
,
6
(
2
), p.
024601
.10.1103/PhysRevFluids.6.024601
4.
Jeffery
,
G. B.
,
1922
, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. London, Ser. A
,
102
(
715
), pp.
161
179
.10.1098/rspa.1922.0078
5.
Khayat
,
R.
, and
Cox
,
R.
,
1989
, “
Inertia Effects on the Motion of Long Slender Bodies
,”
J. Fluid Mech.
,
209
, pp.
435
462
.10.1017/S0022112089003174
6.
Brenner
,
H.
, and
Cox
,
R.
,
1963
, “
The Resistance to a Particle of Arbitrary Shape in Translational Motion at Small Reynolds Numbers
,”
J. Fluid Mech.
,
17
(
4
), pp.
561
595
.10.1017/S002211206300152X
7.
Subramanian
,
G.
, and
Koch
,
D. L.
,
2005
, “
Inertial Effects on Fibre Motion in Simple Shear Flow
,”
J. Fluid Mech.
,
535
, pp.
383
414
.10.1017/S0022112005004829
8.
Dabade
,
V.
,
Marath
,
N. K.
, and
Subramanian
,
G.
,
2015
, “
Effects of Inertia and Viscoelasticity on Sedimenting Anisotropic Particles
,”
J. Fluid Mech.
,
778
, pp.
133
188
.10.1017/jfm.2015.360
9.
Einarsson
,
J.
,
Candelier
,
F.
,
Lundell
,
F.
,
Angilella
,
J.
, and
Mehlig
,
B.
,
2015
, “
Rotation of a Spheroid in a Simple Shear at Small Reynolds Number
,”
Phys. Fluids
,
27
(
6
), p.
063301
.10.1063/1.4921543
10.
Marath
,
N. K.
, and
Subramanian
,
G.
,
2018
, “
The Inertial Orientation Dynamics of Anisotropic Particles in Planar Linear Flows
,”
J. Fluid Mech.
,
844
, pp.
357
402
.10.1017/jfm.2018.184
11.
Candelier
,
F.
,
Mehlig
,
B.
, and
Magnaudet
,
J.
,
2019
, “
Time-Dependent Lift and Drag on a Rigid Body in a Viscous Steady Linear Flow
,”
J. Fluid Mech.
,
864
, pp.
554
595
.10.1017/jfm.2019.23
12.
Paschkewitz
,
J.
,
Dubief
,
Y.
,
Dimitropoulos
,
C. D.
,
Shaqfeh
,
E. S.
, and
Moin
,
P.
,
2004
, “
Numerical Simulation of Turbulent Drag Reduction Using Rigid Fibres
,”
J. Fluid Mech.
,
518
, pp.
281
317
.10.1017/S0022112004001144
13.
Marchioli
,
C.
,
Fantoni
,
M.
, and
Soldati
,
A.
,
2010
, “
Orientation, Distribution, and Deposition of Elongated, Inertial Fibers in Turbulent Channel Flow
,”
Phys. Fluids
,
22
(
3
), p.
033301
.10.1063/1.3328874
14.
Zhao
,
L.
, and
Marchioli
,
C.
, and
Anderson
,
H. I.
,
2014
, “
Slip Velocity of Rigid Fibers in Turbulent Channel Flow
,”
Phys. Fluids
,
26
(
6
), p.
063302
.10.1063/1.4881942
15.
Marchioli
,
C.
,
Zhao
,
L.
, and
Andersson
,
H.
,
2016
, “
On the Relative Rotational Motion Between Rigid Fibers and Fluid in Turbulent Channel Flow
,”
Phys. Fluids
,
28
(
1
), p.
013301
.10.1063/1.4937757
16.
Shaik
,
S.
,
Kuperman
,
S.
,
Rinsky
,
V.
, and
van Hout
,
R.
,
2020
, “
Measurements of Length Effects on the Dynamics of Rigid Fibers in a Turbulent Channel Flow
,”
Phys. Rev. Fluids
,
5
(
11
), p.
114309
.10.1103/PhysRevFluids.5.114309
17.
Shaik
,
S.
, and
van Hout
,
R.
,
2023
, “
Kinematics of Rigid Fibers in a Turbulent Channel Flow
,”
Int. J. Multiphase Flow
,
158
, p.
104262
.10.1016/j.ijmultiphaseflow.2022.104262
18.
Cui
,
Z.
,
Qiu
,
J.
,
Jiang
,
X.
, and
Zhao
,
L.
,
2023
, “
Effect of Fluid Inertial Torque on the Rotational and Orientational Dynamics of Tiny Spheroidal Particles in Turbulent Channel Flow
,”
J. Fluid Mech.
,
977
, p.
A20
.10.1017/jfm.2023.942
19.
Sulaiman
,
M.
,
Climent
,
E.
,
Delmotte
,
B.
,
Fede
,
P.
,
Plouraboué
,
F.
, and
Verhille
,
G.
,
2019
, “
Numerical Modelling of Long Flexible Fibers in Homogeneous Isotropic Turbulence
,”
Eur. Phys. J. E
,
42
(
10
), pp.
1
11
.10.1140/epje/i2019-11894-7
20.
Oehmke
,
T. B.
,
Bordoloi
,
A. D.
,
Variano
,
E.
, and
Verhille
,
G.
,
2021
, “
Spinning and Tumbling of Long Fibers in Isotropic Turbulence
,”
Phys. Rev. Fluids
,
6
(
4
), p.
044610
.10.1103/PhysRevFluids.6.044610
21.
Rosti
,
M. E.
,
Banaei
,
A. A.
,
Brandt
,
L.
, and
Mazzino
,
A.
,
2018
, “
Flexible Fiber Reveals the Two-Point Statistical Properties of Turbulence
,”
Phys. Rev. Lett.
,
121
(
4
), p.
044501
.10.1103/PhysRevLett.121.044501
22.
Rosti
,
M. E.
,
Olivieri
,
S.
,
Banaei
,
A. A.
,
Brandt
,
L.
, and
Mazzino
,
A.
,
2020
, “
Flowing Fibers as a Proxy of Turbulence Statistics
,”
Meccanica
,
55
(
2
), pp.
357
370
.10.1007/s11012-019-00997-2
23.
Olivieri
,
S.
,
Mazzino
,
A.
, and
Rosti
,
M. E.
,
2021
, “
Universal Flapping States of Elastic Fibers in Modulated Turbulence
,”
Phys. Fluids
,
33
(
7
), p.
071704
.10.1063/5.0058835
24.
Olivieri
,
S.
,
Mazzino
,
A.
, and
Rosti
,
M. E.
,
2022
, “
On the Fully Coupled Dynamics of Flexible Fibres Dispersed in Modulated Turbulence
,”
J. Fluid Mech.
,
946
, p.
A34
.10.1017/jfm.2022.611
25.
Andrić
,
J.
,
Fredriksson
,
S. T.
,
Lindström
,
S. B.
,
Sasic
,
S.
, and
Nilsson
,
H.
,
2013
, “
A Study of a Flexible Fiber Model and Its Behavior in DNS of Turbulent Channel Flow
,”
Acta Mech.
,
224
(
10
), pp.
2359
2374
.10.1007/s00707-013-0918-y
26.
Dotto
,
D.
, and
Marchioli
,
C.
,
2019
, “
Orientation, Distribution, and Deformation of Inertial Flexible Fibers in Turbulent Channel Flow
,”
Acta Mech.
,
230
(
2
), pp.
597
621
.10.1007/s00707-018-2355-4
27.
Dotto
,
D.
,
Soldati
,
A.
, and
Marchioli
,
C.
,
2020
, “
Deformation of Flexible Fibers in Turbulent Channel Flow
,”
Meccanica
,
55
(
2
), pp.
343
356
.10.1007/s11012-019-01074-4
28.
Di Giusto
,
D.
, and
Marchioli
,
C.
,
2022
, “
Turbulence Modulation by Slender Fibers
,”
Fluids
,
7
(
8
), p.
255
.10.3390/fluids7080255
29.
Brouzet
,
C.
,
Verhille
,
G.
, and
Le Gal
,
P.
,
2014
, “
Flexible Fiber in a Turbulent Flow: A Macroscopic Polymer
,”
Phys. Rev. Lett.
,
112
(
7
), p.
074501
.10.1103/PhysRevLett.112.074501
30.
Bec
,
J.
,
Brouzet
,
C.
, and
Henry
,
C.
,
2024
, “
Enhanced Transport of Flexible Fibers by Pole Vaulting in Turbulent Wall-Bounded Flow
,”
Phys. Rev. Fluids
,
9
(
6
), p.
L062501
.10.1103/PhysRevFluids.9.L062501
31.
Lindström
,
S. B.
, and
Uesaka
,
T.
,
2007
, “
Simulation of the Motion of Flexible Fibers in Viscous Fluid Flow
,”
Phys. Fluids
,
19
(
11
), p.
113307
.10.1063/1.2778937
32.
Cox
,
R.
,
1971
, “
The Motion of Long Slender Bodies in a Viscous Fluid. Part 2. Shear Flow
,”
J. Fluid Mech.
,
45
(
4
), pp.
625
657
.10.1017/S0022112071000259
33.
Kim
,
S.
, and
Karrila
,
S. J.
,
2013
,
Microhydrodynamics: Principles and Selected Applications
,
Butterworth-Heinemann
, Boston, MA.
34.
Guazzelli
,
E.
, and
Pouliquen
,
O.
,
2018
, “
Rheology of Dense Granular Suspensions
,”
J. Fluid Mech.
,
852
, p.
P1
.10.1017/jfm.2018.548
35.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
, and
Zang
,
T. A.
,
2007
,
Spectral Methods: Fundamentals in Single Domains
,
Springer Science & Business Media
, Berlin, Heidelberg.
36.
Moses
,
K. B.
,
Advani
,
S. G.
, and
Reinhardt
,
A.
,
2001
, “
Investigation of Fiber Motion Near Solid Boundaries in Simple Shear Flow
,”
Rheol. Acta
,
40
(
3
), pp.
296
306
.10.1007/s003970000135
37.
Capone
,
A.
,
Miozzi
,
M.
, and
Romano
,
G. P.
,
2017
, “
On Translational and Rotational Relative Velocities of Fibers and Fluid in a Turbulent Channel Flow With a Backward-Facing Step
,”
Int. J. Multiphase Flow
,
94
, pp.
189
200
.10.1016/j.ijmultiphaseflow.2017.04.021
38.
Alipour
,
M.
,
De Paoli
,
M.
, and
Soldati
,
A.
,
2022
, “
Influence of Reynolds Number on the Dynamics of Rigid, Slender and Non-Axisymmetric Fibres in Channel Flow Turbulence
,”
J. Fluid Mech.
,
934
, p.
A18
.10.1017/jfm.2021.1145
39.
Baker
,
L. J.
, and
Coletti
,
F.
,
2022
, “
Experimental Investigation of Inertial Fibres and Disks in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
943
, p.
A27
.10.1017/jfm.2022.438
40.
Byron
,
M.
,
Einarsson
,
J.
,
Gustavsson
,
K.
,
Voth
,
G.
,
Mehlig
,
B.
, and
Variano
,
E.
,
2015
, “
Shape-Dependence of Particle Rotation in Isotropic Turbulence
,”
Phys. Fluids
,
27
(
3
), p.
035101
.10.1063/1.4913501
41.
Parsa
,
S.
, and
Voth
,
G. A.
,
2014
, “
Inertial Range Scaling in Rotations of Long Rods in Turbulence
,”
Phys. Rev. Lett.
,
112
(
2
), p.
024501
.10.1103/PhysRevLett.112.024501
42.
Giurgiu
,
V.
,
Caridi
,
G. C. A.
,
De Paoli
,
M.
, and
Soldati
,
A.
,
2024
, “
Full Rotational Dynamics of Plastic Microfibers in Turbulence
,”
Phys. Rev. Lett.
,
133
(
5
), p.
054101
.10.1103/PhysRevLett.133.054101
43.
Sheikh
,
M. Z.
,
Gustavsson
,
K.
,
Lopez
,
D.
,
Lévêque
,
E.
,
Mehlig
,
B.
,
Pumir
,
A.
, and
Naso
,
A.
,
2020
, “
Importance of Fluid Inertia for the Orientation of Spheroids Settling in Turbulent Flow
,”
J. Fluid Mech.
,
886
, p.
A9
.10.1017/jfm.2019.1041
44.
Olivieri
,
S.
,
Brandt
,
L.
,
Rosti
,
M. E.
, and
Mazzino
,
A.
,
2020
, “
Dispersed Fibers Change the Classical Energy Budget of Turbulence Via Nonlocal Transfer
,”
Phys. Rev. Lett.
,
125
(
11
), p.
114501
.10.1103/PhysRevLett.125.114501
45.
Di Giusto
,
D.
,
Bergougnoux
,
L.
,
Marchioli
,
C.
, and
Guazzelli
,
E.
,
2024
, “
Influence of Small Inertia on Jeffery Orbits
,”
J. Fluid Mech.
,
979
, p.
A42
.10.1017/jfm.2023.1007
You do not currently have access to this content.