Abstract

The unique force characteristics constrain significant improvements in the motion performance of supercavitating vehicles (SCAVs). To enhance stable motion performance, understanding motion characteristics is essential. Considering factors affecting the stable motion, the horizontal launch free motions of propelled vehicles are simulated by developing a numerical method based on the dynamic model of a natural SCAV, and analyses are conducted on the impacts of launch water depth, initial motion velocity, and propulsive force on motion characteristics. The study reveals that intense changes in vertical velocity cause motion instability and determine the instability mode by affecting the vehicle’s motion attitude and afterbody hydrodynamic force. Motion performance is enhanced using the optimized geometric characteristic model and initial motion parameters influenced by launch water depth. A balanced initial motion velocity, where propulsive force and resistance are comparable, promotes stable motion. In such cases, the vehicle maintain relatively stable motion with periodic contact with the supercavity’s lower surface; however, the immersion depth of the afterbody gradually increases until complete instability occurs. Both a small initial speed and propulsive force contribute to rapid instability. To ensure a stable long-distance navigation, in addition to equipping propulsion, control forces provided by the fin are essential to counteract the increasing swing of the afterbody. This study can establish a foundation for the hydrodynamic layout and initial motion parameter design of high-performance supercavitating vehicles launched underwater by combining computational fluid dynamics simulations and experiments. It also provides support for research on the vehicle’s motion stability and control in complex motions.

References

1.
Serebryakov
,
V.
,
2009
, “
Physical-Mathematical Bases of the Principle of Independence of Cavity Expansion
,”
Proceedings of the Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 17–22, Paper No. 169.https://hdl.handle.net/2027.42/84216
2.
Paryshev
,
E. V.
,
2006
, “
Approximate Mathematical Models in High-Speed Hydrodynamics
,”
J. Eng. Math.
,
55
(
1–4
), pp.
41
64
.10.1007/s10665-005-9026-x
3.
Lindau
,
J. W.
,
Kunz
,
R. F.
,
Mulherin
,
J. M.
,
James
,
J. D.
, and
Stinebring
,
D. R.
,
2003
, “
Fully Coupled, 6-DOF to URANS, Modeling of Cavitating Flows Around a Supercavitating Vehicle
,”
Proceedings of the Fifth International Symposium on Cavitation
, Osaka, Japan, Nov. 1–4, Paper No. Cav03-OS-7-019.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=ee0cfef56acdaa1ace958777808c20841638500f
4.
Yu
,
K. P.
,
Zhang
,
G.
,
Zhou
,
J. J.
,
Zou
,
W.
, and
Li
,
Z. W.
,
2012
, “
Numerical Study of the Pitching Motions of Supercavitating Vehicles
,”
J. Hydrodyn. Ser. B
,
24
(
6
), pp.
951
958
.10.1016/S1001-6058(11)60323-5
5.
Kulkarni
,
S. S.
, and
Pratap
,
R.
,
2000
, “
Studies on the Dynamics of a Supercavitating Projectile
,”
Appl. Math. Model.
,
24
(
2
), pp.
113
129
.10.1016/S0307-904X(99)00028-1
6.
Ruzzene
,
M.
, and
Soranna
,
F.
,
2004
, “
Impact Dynamics of Elastic Stiffened Supercavitating Underwater Vehicles
,”
J. Vib. Control
,
10
(
2
), pp.
243
267
.10.1177/1077546304035607
7.
Zou
,
W.
, and
Liu
,
H.
,
2015
, “
Modeling and Simulations of the Supercavitating Vehicle With Its Tail-Slaps
,”
ASME J. Fluids Eng.
,
137
, p.
041302
.10.1115/1.4029330
8.
Cameron
,
P. J. K.
,
Rogers
,
P. H.
,
Doane
,
J. W.
, and
David
,
H. G.
,
2011
, “
An Experiment for the Study of Free-Flying Supercavitating Projectiles
,”
ASME J. Fluids Eng.
,
133
, p.
021303
.10.1115/1.4003560
9.
Zou
,
W.
,
Liu
,
T. X.
,
Tang
,
Z. H.
, and
Shi
,
Y. K.
,
2023
, “
Optimized Design of the Overall Shapes of Supercavitating Vehicles Based on a Multi-Objective Adaptive Genetic Algorithm
,”
Ocean Eng.
,
286
, p.
115523
.10.1016/j.oceaneng.2023.115523
10.
Saranjam
,
B.
,
2013
, “
Experimental and Numerical Investigation of an Unsteady Supercavitating Moving Body
,”
Ocean Eng.
,
59
, pp.
9
14
.10.1016/j.oceaneng.2012.12.021
11.
Han
,
Y. T.
,
Xu
,
Z.
, and
Guo
,
H.
,
2021
, “
Robust Predictive Control of a Supercavitating Vehicle Based on Time-Delay Characteristics and Parameter Uncertainty
,”
Ocean Eng.
,
237
, p.
109627
.10.1016/j.oceaneng.2021.109627
12.
Choe
,
Y.
, and
Kim
,
C.
,
2022
, “
Computational Investigation on Ventilated Supercavitating Flows and Its Hydrodynamic Characteristics Around a High-Speed Underwater Vehicle
,”
Ocean Eng.
,
249
, p.
110865
.10.1016/j.oceaneng.2022.110865
13.
Wosnik
,
M.
, and
Arndt
,
R. E. A.
,
2009
, “
Control Experiments With a Semi-Axisymmetric Supercavity and a Supercavity-Piercing Fin
,”
Proceedings of the Seventh International Symposium on Cavitation
, Ann Arbor, MI, Aug. 17–22, Paper No. 146.https://hdl.handle.net/2027.42/84319
14.
Yuan
,
X. L.
, and
Xing
,
T.
,
2016
, “
Hydrodynamic Characteristics of a Supercavitating Vehicle’s Aft Body
,”
Ocean Eng.
,
114
, pp.
37
46
.10.1016/j.oceaneng.2016.01.012
15.
Zou
,
W.
, and
Wang
,
B. L.
,
2020
, “
Longitudinal Maneuvering Motions of the Supercavitating Vehicle
,”
Eur. J. Mech. B. Fluids
,
81
, pp.
105
113
.10.1016/j.euromechflu.2019.12.008
16.
Zou
,
W.
,
Liu
,
T. X.
,
Shi
,
Y. K.
, and
Wang
,
J. X.
,
2021
, “
Analysis of Motion Characteristics of a Controllable Ventilated Supercavitating Vehicle Under Accelerations
,”
ASME J. Fluids Eng.
,
143
, p.
111204
.10.1115/1.4051216
17.
Zou
,
W.
, and
Liu
,
H.
,
2015
, “
Control of the Ventilated Supercavity on the Maneuvering Trajectory
,”
Ocean Eng.
,
101
, pp.
235
243
.10.1016/j.oceaneng.2015.04.036
18.
Xu
,
H. Y.
,
Wang
,
C.
,
Wei
,
Y. J.
,
Cao
,
W.
, and
Wang
,
W.
,
2023
, “
On the Evolution of Supercavity Geometry and Unsteady Behavior of Supercavitation Flow During the Development of a Twin-Vortex Supercavity
,”
Ocean Eng.
,
276
, p.
114213
.10.1016/j.oceaneng.2023.114213
19.
Mirzaei
,
M.
, and
Taghvaei
,
H.
,
2019
, “
A Novel Configuration Optimization for High-Speed Ventilated Supercavitating Vehicles
,”
Ocean Eng.
,
179
, pp.
13
21
.10.1016/j.oceaneng.2019.03.013
20.
Zou
,
W.
,
Liu
,
T. X.
, and
Shi
,
Y. K.
,
2021
, “
Optimization of the Maximum Range of Supercavitating Vehicles Based on a Genetic Algorithm
,”
Ocean Eng.
,
239
, p.
109892
.10.1016/j.oceaneng.2021.109892
21.
Mansour
,
M. Y.
,
Mansour
,
M. H.
,
Mostafa
,
N. H.
, and
Rayan
,
M. A.
,
2020
, “
Numerical and Experimental Investigation of Supercavitating Flow Development Over Different Nose Shape Projectiles
,”
IEEE J. Oceanic Eng.
,
45
(
4
), pp.
1370
1385
.10.1109/JOE.2019.2910644
22.
Jiang
,
Y. H.
,
Shao
,
S. Y.
, and
Hong
,
J. R.
,
2018
, “
Experimental Investigation of Ventilated Supercavitation With Gas Jet Cavitator
,”
Phys. Fluids
,
30
, p.
012103
.10.1063/1.5005549
23.
Shao
,
S. Y.
,
Balakrishna
,
A.
,
Yoon
,
K.
,
Li
,
J. Q.
,
Liu
,
Y.
, and
Hong
,
J. R.
,
2020
, “
Effect of Mounting Strut and Cavitator Shape on the Ventilation Demand for Ventilated Supercavitation
,”
Exp. Therm. Fluid Sci.
,
118
, p.
110173
.10.1016/j.expthermflusci.2020.110173
24.
Li
,
D. J.
,
Li
,
F. J.
,
Shi
,
Y. Z.
,
Dang
,
J. J.
, and
Luo
,
K.
,
2020
, “
A Novel Hydrodynamic Layout of Front Vertical Rudders for Maneuvering Underwater Supercavitating Vehicles
,”
Ocean Eng.
,
215
, p.
107894
.10.1016/j.oceaneng.2020.107894
25.
Sanabria
,
D. E.
,
Balas
,
G.
, and
Arndt
,
R.
,
2015
, “
Modeling, Control, and Experimental Validation of a High-Speed Supercavitating Vehicle
,”
IEEE J. Oceanic Eng.
,
40
(
2
), pp.
362
373
.10.1109/JOE.2014.2312591
26.
Liu
,
R. S.
,
Guo
,
Z. Q.
,
Feng
,
W.
,
Sun
,
S.
, and
Zhang
,
H.
,
2024
, “
Numerical-Experimental Study on the Stability Mechanism of Tail Slapping Motion of Supercavitation Projectile
,”
Phys. Fluids
,
36
, p.
023307
.10.1063/5.0180108
27.
Kim
,
S.
, and
Kim
,
N.
,
2015
, “
Integrated Dynamics Modeling for Supercavitating Vehicle Systems
,”
Int. J. Nav. Archit. Ocean Eng.
,
7
(
2
), pp.
346
363
.10.1515/ijnaoe-2015-0024
28.
Savchenko
,
Y. N.
,
Semenenko
,
V. N.
, and
Savchenko
,
G. Y.
,
2019
, “
Peculiarities of Supercavitating Vehicles’ Maneuvering
,”
Int. J. Fluid Mech. Res.
,
46
(
4
), pp.
309
323
.10.1615/InterJFluidMechRes.v46.i4.30
29.
Kirschner
,
I. N.
, and
Arzoumanian
,
S. H.
,
2008
, “
Implementation and Extension of Paryshev’s Model of Cavity Dynamics
,” Proceedings of the International Conference on Innovative Approaches to Further Increase Speed of Fast Marine Vehicles, Moving Above, Under and In Water Surface (
SuperFAST’2008
)
, Saint-Petersburg, Russia, July 2–4, pp.
1
32
.https://www.researchgate.net/publication/236609804_Implementation_and_Extension_of_Paryshev's_Model_of_Cavity_Dynamics
30.
Zou
,
W.
,
Liu
,
H.
, and
Xue
,
L. P.
,
2016
, “
Three-Dimensional Ventilated Supercavity on a Maneuvering Trajectory
,”
Ocean Eng.
,
122
, pp.
97
104
.10.1016/j.oceaneng.2016.06.023
31.
Serebryakov
,
V.
,
2021
, “
Study of Flow Problems a Supercavitating Body Under Conditions of Significant Accelerations of Motion
,”
Proceedings of the 11th International Symposium on Cavitation
, Daejon, Korea, May 9–13, P0063.
32.
Zou
,
W.
,
Liu
,
T. X.
,
Gao
,
X. Q.
, and
Shi
,
Y. K.
,
2023
, “
Multiphase Flow Characteristics and Gas Loss in the Shear Layer on a Ventilated Supercavity Wall
,”
Phys. Fluids
,
35
, p.
043318
.10.1063/5.0141678
33.
Zou
,
W.
, and
Gan
,
H. Y.
,
2024
, “
Free Motion Characteristics of the Ventilated Supercavitating Vehicles
,”
J. Phys.: Conf. Ser.
,
2756
(
1
), p.
012046
.10.1088/1742-6596/2756/1/012046
34.
Lee
,
S. J.
,
Paik
,
B. G.
, and
Arndt
,
R. E. A.
,
2019
, “
Morphological Changes of Ventilated Supercavities in Continuous and Discrete Incident Gust Flows
,”
Ocean Eng.
,
172
, pp.
1
8
.10.1016/j.oceaneng.2018.11.032
35.
Logvinovich
,
G. V.
, and
Serebryakov
,
V.
,
1975
, “
On Methods of Calculation of Slender Axisymmetric Cavities Shape
,”
Hydromech., Natl. Acad. Sci.
,
32
, pp.
47
54
(in Russian).https://www.researchgate.net/publication/335964811
36.
Kawakami
,
E.
, and
Arndt
,
R. E. A.
,
2011
, “
Investigation of the Behavior of Ventilated Supercavities
,”
ASME J. Fluids Eng.
,
133
(
9
), p.
091305
.10.1115/1.4004911
37.
Zhao
,
C. G.
,
Wang
,
C.
,
Wei
,
Y. J.
, and
Zhang
,
X. S.
,
2015
, “
An Experimental Study on Characteristics of Cavitation and Ballistic of Axisymmetric Slender Body Underwater Movement
,”
J. Phys.: Conf. Ser.
,
656
, p.
012175
.10.1088/1742-6596/656/1/012175
You do not currently have access to this content.