Abstract

The turbulent transitional rough pipe universal power law and equivalent log law are, independent of wall roughness, without any closure model. The open Reynolds mean momentum equations are employed without closure models such as eddy viscosity or mixing length. That all components of Reynolds stress are of same order of the wall shear stress, τw. The key parameters are wall roughness scale ϕ, roughness friction Reynolds number Rτϕ=Reτ/ϕ, and roughness average Reynolds number Rbϕ=Reb/ϕ. The s three layers (inner, meso, and outer), with overlap region reveals dual solutions: power law and log law. The power law friction factor can be expressed as λ=(CS,n,Re/ϕ). The power law index n and prefactor CS remain as fully smooth pipe power law constants and do not depend on the roughness friction Reynolds number Reτ/ϕ. The power law velocity and friction factor exhibit envelopes where the tangent at a point Reτ/ϕ=exp(α1κB) yields equivalent log laws. If outer layer is neglected, the power law friction factor simplifies to λ=CS(Re/ϕ)n. As an engineering approximation, the power laws fr are extrapolated within a ± 5 percent domain, a limited range of Reynolds numbers with experimental and direct numerical simulation (DNS) data. Additionally, log law theory for transitional rough pipe is extended to higher-order effects (Reτ/ϕ)p, where p=1,2,,. The power law and log law work comparison were made with turbulent transitional experimental and DNS data.

References

1.
Blasius
,
P. R. H.
,
1913
, “
Das Aehnlichkeitsgesetz Bei Reibungsvorgangen in Flüssigkeiten
,”
Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens
, Vol.
131
, Springer, Berlin, Germany, pp.
1
41
.10.1007/978-3-662-02239-9_1
2.
Eckert
,
M.
,
2021
, “
Pipe Flow: A Gateway to Turbulence
,”
Archive History Exact Sci.
,
75
(
3
), pp.
249
282
.10.1007/s00407-020-00263-y
3.
Steen
,
P.
, and
Brutsaert
,
W.
,
2017
, “
Saph and Schoder and the Friction Law of Blasius
,”
Annu. Rev. Fluid Mech.
,
49
(
1
), pp.
575
582
.10.1146/annurev-fluid-080316-121100
4.
Saph
,
A. V.
, and
Schoder
,
E. H.
,
1903
, “
An Experimental Study of the Resistances to the Flow of Water in Pipes
,”
Trans. Am. Soc. Civ. Eng.
,
51
(
2
), pp.
253
312
.10.1061/TACEAT.0001608
5.
Prandtl
,
L.
,
1923
, “
Sie Fragen Nach Der Theoretischen Ableitung Des Blasius Schen Widerstandsgesetzes Für Rohre
,” wer der wird dadurch ein berühmter mann! Prandtl to Birnbaum, 7 June 1923, MPGA, Abt. III, Nr. 137 (See also page 271 & footnote 37 in Eckert [1]) No. 61.
6.
Cipra
,
B.
,
1996
, “
A New Theory of Turbulence Causes a Stir Among Experts
,”
Science
,
272
(
5264
), pp.
951
951
.10.1126/science.272.5264.951
7.
Egolf
,
P. W.
, and
Hutter
,
K.
,
2020
,
Nonlinear, Nonlocal and Fractional Turbulence
,
Springer
Cham, Switzeland.
8.
Izakson
,
A. A.
,
1937
, “
On Formula for the Velocity Distribution Near Walls (Engl. trans.)
,”
Tech. Phys. USSR
,
4
, pp.
155
159
.
9.
Millikan
,
C. B.
,
1939
, “
A Critical Discussion of Turbulent Flow in Channels and Circular Tubes
,”
Proceedings of the 5th International Congress on Applied Mechanics
, Cambridge, MA, Sept. 12–26, pp.
386
392
.
10.
Prandtl
,
L.
,
1935
, “
The Mechanics of Viscous Fluids
,”
Aerodynamic Theory III
,
W. F.
Durand
, eds.,
Springer
,
Berlin
, pp.
32
184
.
11.
Vilquin
,
A.
,
Jagielka
,
J.
,
Djambov
,
S.
,
Herouard
,
H.
,
Fischer
,
P.
,
Bruneau
,
C.-H.
,
Chakraborty
,
P.
,
Gioia
,
G.
, and
Kellay
,
H.
,
2021
, “
Asymptotic Turbulent Friction in 2d Rough-Walled Flows
,”
Sci. Adv.
,
7
(
5
), p.
eabc6234
.10.1126/sciadv.abc6234
12.
Falkovich
,
G.
, and
Vladimirova
,
N.
,
2018
, “
Turbulence Appearance and Non-Appearance in Thin Fluid Layers
,”
Phys. Rev. Lett.
,
121,
p. 164501.10.1103/PhysRevLett.121.164501
13.
Nikuradse
,
J.
,
1933
, “
Strömungsgesetze in Rauhen Rohren
,”
VDI Forschungsheft
, Vol.,
361
No. NACA TM-1292.
14.
Raoufi
,
A.
,
Williams
,
A.
,
Metcalfe
,
C.
,
Trudeau
,
P.
,
Brinkerhoff
,
J. R.
,
Lucas Warwaruk
,
L.
, and
Ghaemi
,
S.
,
2024
, “
Comparison of Heat Transfer and Friction in Pipes With Various Internal Roughness
,”
ASME J. Fluids Eng.
,
146
(
6
), p.
061302
.10.1115/1.4064495
15.
Wang
,
W. J.
,
Li
,
S.
,
Huang
,
W.
,
Han
,
Z.
, and
Wang
,
W.-H.
,
2024
, “
A Unified Friction Factor Formulation: Bridging Laminar and Turbulent Friction Factor With Critical Points Analysis
,”
Phys. Fluids
,
36
(
1
), p.
014116
.10.1063/5.0177220
16.
Strickler
,
A.
,
1923
,
Beiträge Zur Frage Der Geschwindigkeitsformel Und Der Rauhigkeitszahlen Für Ströme, Kanäle Und Geschlossene Leitungen
,
Amtes for Wasserwirtschaft
.
17.
Clauser
,
F. H.
,
1956
,
The Turbulent Boundary Layer
, Advances in Applied Mechanics, Vol. IV,
Academic Press
,
New York
.
18.
Maio
,
M. D.
,
Latini
,
B.
,
Nasuti
,
F.
, and
Pirozzoli
,
P.
,
2023
, “
Direct Numerical Simulation of Turbulent Flow in Pipes With Realistic Large Roughness at the Wall
,”
J. Fluid Mech.
,
974
, pp.
1
28
.10.1017/jfm.2023.728
19.
Shockling
,
M. A.
,
2005
, “
Turbulent Flow in a Rough Pipe
,” MSE dissertation,
Princeton University, Princeton, NJ
.
20.
Sletfjerding
,
E.
,
1999
, “
Friction Factor in Smooth and Rough Gas Pipelines
,” Ph.D. thesis,
Norwegian University of Science and Technology
,
Trondheim, Norway
.
21.
Fiorini
,
T.
,
2017
, “
Turbulent Pipe Flow High Resolution Measurements in Ciclope
,” Ph.D. thesis,
University of Bologna
,
Italy
.
22.
Furuichi
,
N.
,
Terao
,
Y.
,
Wada
,
Y.
, and
Tsuji
,
Y.
,
2015
, “
Friction Factor and Mean Velocity Profile for Pipe Flow at High Reynolds Numbers
,”
Phys. Fluids
,
27
(
9
), p.
095108
.10.1063/1.4930987
23.
McKeon
,
B. J.
,
Swanson
,
C. J.
,
Zagarola
,
M. V.
,
Donnelly
,
R. J.
, and
Smits
,
A. J.
,
2004
, “
Friction Factors for Smooth Pipe Flow
,”
J. Fluid Mech.
,
511
, pp.
41
44
.10.1017/S0022112004009796
24.
McKeon
,
B. J.
,
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
2005
, “
Friction Factors for Smooth Pipe Flow
,”
J. Fluid Mech.
,
538
, pp.
429
443
.10.1017/S0022112005005501
25.
Swanson
,
C. J.
,
Julian
,
B.
,
Ihas
,
G. G.
, and
Donnelly
,
R. J.
,
2002
, “
Pipe Flow Measurements Over a Wide Range of Reynolds Numbers Using Liquid Helium and Various Gases
,”
J. Fluid Mech.
,
461
, pp.
51
60
.10.1017/S0022112002008595
26.
Afzal
,
N.
,
2001
, “
Power Law and Log Law Velocity Profiles in Fully Developed Turbulent Pipe Flow: Equivalent Relations at Large Reynolds Numbers
,”
Acta Mech.
,
151
(
3–4
), pp.
171
183
.10.1007/BF01246916
27.
Coles
,
D.
,
1956
, “
The Law of the Wake in the Turbulent Boundary Layer
,”
J. Fluid Mech.
,
1
(
2
), pp.
191
226
.10.1017/S0022112056000135
28.
Afzal
,
N.
,
1976
, “
Millikan's Argument at Moderately Large Reynolds Number
,”
Phys. Fluids
,
19
(
4
), pp.
600
602
.10.1063/1.861498
29.
Afzal
,
N.
, and
Yajnik
,
K. S.
,
1973
, “
Analysis of Turbulent Pipe and Channel Flows at Moderately Large Reynolds Number
,”
J. Fluid Mech.
,
61
(
1
), pp.
23
31
.10.1017/S0022112073000546
30.
Afzal
,
N.
, and
Bush
,
W. B.
,
1985
, “
A Three Layer Asymptotic Analysis of Turbulent Channel Flows
,”
Indian Acad. Sci.: Ser. A
,
94
, pp.
135
148
.10.1007/BF02880993
31.
Oliver
,
T. A.
, and
Moser
,
R. D.
,
2012
, “
Accounting for Uncertainty in the Analysis of Overlap Layer Mean Velocity Models
,”
Phys. Fluids
,
24
(
7
), p.
075108
.10.1063/1.4733455
32.
Oliver
,
T. A.
, and
Moser
,
R. D.
,
2012
, “
Accounting for Uncertainty in the Analysis of Overlap Layer Mean Velocity Models
,” Report No 125/2012 ME/AMU.
33.
Duncan
,
W. J.
,
Thom
,
A. S.
, and
Young
,
D.
,
1970
,
Mechanics of Fluids
,
Elbs
,
London
.
34.
Afza
,
N.
,
Seena
,
A.
, and
Bushra
,
A.
,
2023
, “
Friction Factor Power Law With Equivalent Log Law, of a Turbulent Fully Developed Flow, in a Fully Smooth Pipe
,”
ZAMP
,
74
(
4
), pp.
1
13
.10.1007/s00033-023-01997-9
35.
Patel
,
V. C.
, and
Head
,
M. R.
,
1969
, “
Some Observations on Skin Friction and Velocity Profile in Fully Developed Pipe and Channel Flow
,”
J. Fluid Mech.
,
38
(
1
), pp.
181
201
.10.1017/S0022112069000115
36.
Dubrulle
,
B.
,
2024
, “
Log at First Sight
,”
J. Fluid Mech.
,
1000
, pp.
F6–1
5
.10.1017/jfm.2024.873
37.
Zagarola
,
M. V.
, and
Smits
,
A. J.
,
1998
, “
Mean-Flow Scaling of Turbulent Pipe Flow
,”
J. Fluid Mech.
,
373
, pp.
33
79
.10.1017/S0022112098002419
38.
Afzal
,
N.
,
2007
, “
Friction Factor Directly From Transitional Rough Pipes
,”
ASME J. Fluids Eng.
,
129
(
10
), pp.
1255
1267
.10.1115/1.2776961
You do not currently have access to this content.