Abstract

The wakes shed alternatively from two long stationary side-by-side cylinders have long been an issue in many engineering applications, such as wind energy harvesting schemes that utilize vortex-induced vibrations (VIVs). In this study, switching events of the wakes shed from two “short,” “flapping” side-by-side cylinders are investigated. To this end, the flow visualization and spectral analysis of the time-resolved data from hot-wire anemometers and the piezoelectric mount of flapping cylinders are carried out. Measurements are conducted with differing center-to-center spacing normalized by a single cylinder diameter (T/D)—gap ratio, and length-to-diameter ratio (L/D) in a Reynolds number range of 800 ≤ ReD ≤ 16,000. The results demonstrate the transition of wake shedding patterns, sequentially from a single bluff body wake, first bistable wakes, tristable wakes, second bistable wakes, and eventually to coupled wakes as the gap ratio is increased. Furthermore, the role of shortness and flapping of the two cylinders in determining the wake kinematics is elucidated, and the transitional sequences and switching of dominant shedding frequencies are detailed.

References

1.
Zdravkovich
,
M. M.
,
1977
, “
Review of Flow Interference Between Two Circular Cylinders in Various Arrangement
,”
ASME J. Fluids Eng.
,
99
(
4
), pp.
618
633
.10.1115/1.3448871
2.
Sumner
,
D.
,
Wong
,
S. S. T.
,
Price
,
S. J.
, and
Paidoussis
,
M. P.
,
1999
, “
Fluid Behavior of Side-by-Side Circular Cylinders in Steady Cross-Flow
,”
J. Fluids Struct.
,
13
(
3
), pp.
309
338
.10.1006/jfls.1999.0205
3.
Wang
,
J.
,
Fan
,
D.
, and
Lin
,
K.
,
2020
, “
A Review on Flow-Induced Vibration of Offshore Circular Cylinder
,”
J. Hydrodyn.
,
32
(
3
), pp.
415
440
.10.1007/s42241-020-0032-2
4.
Lee
,
Y. J.
,
Qi
,
Y.
,
Zhou
,
G.
, and
Lua
,
B. K.
,
2019
, “
Vortex-Induced Vibration Wind Energy Harvesting by Piezoelectric MEMS Device in Formation
,”
Sci. Rep.
,
9
, p.
20404
.10.1038/s41598-019-56786-0
5.
Brun
,
C.
,
Tenchine
,
D.
, and
Hopfinger
,
E. J.
,
2004
, “
Role of the Shear Layer Instability in the Near Wake Behavior of Two Side-by-Side Circular Cylinders
,”
Exp. Fluids
,
36
(
2
), pp.
334
343
.10.1007/s00348-003-0726-6
6.
Atkins
,
M. D.
,
Dala
,
L.
, and
Kim
,
T.
,
2016
, “
Time-Averaged Behavior of Gap Flow Between Two Side-by-Side Circular Cylinders
,”
AIAA J.
,
54
(
9
), pp.
2742
2754
.10.2514/1.J054638
7.
Graham
,
J. M. R.
,
1969
, “
The Effect of End-Plates on the Two-Dimensionality of a Vortex Wake
,”
Aeronaut. Q.
,
20
(
3
), pp.
237
247
.10.1017/S0001925900005059
8.
Okamoto
,
T.
, and
Yagita
,
M.
,
1973
, “
The Experimental Investigation on the Flow Past a Circular Cylinder of Finite Length Placed Normal to the Plane Surface in a Uniform Stream
,”
Bull. JSME
,
16
(
95
), pp.
805
814
.10.1299/jsme1958.16.805
9.
Chakroun
,
W. M.
,
Abdel Rahman
,
A. A.
, and
Quadri
,
M. M. A.
,
1997
, “
The Effect of Surface Roughness on Flow Around a Circular Cylinder
,”
Wind Eng.
,
21
(
1
), pp.
1
12
.https://www.jstor.org/stable/43750235
10.
Kim
,
S.
, and
Alam
,
M. M.
,
2015
, “
Characteristics and Suppression of Flow-Induced Vibrations of Two Side-by-Side Circular Cylinders
,”
J. Fluids Struct.
,
54
, pp.
629
642
.10.1016/j.jfluidstructs.2015.01.004
11.
Wang
,
X. Q.
,
So
,
R. M. C.
,
Xie
,
W.-C.
, and
Zhu
,
J.
,
2008
, “
Free-Stream Turbulence Effects on Vortex-Induced Vibration of Two Side-by-Side Elastic Cylinders
,”
J. Fluids Struct.
,
24
(
5
), pp.
664
679
.10.1016/j.jfluidstructs.2007.10.007
12.
Xu
,
S. J.
,
Zhou
,
Y.
, and
So
,
R. M. C.
,
2003
, “
Reynolds Number Effects on the Flow Structure Behind Two Side-by-Side Cylinders
,”
Phys. Fluids
,
15
(
5
), pp.
1214
1219
.10.1063/1.1561614
13.
Bearman
,
P. W.
, and
Wadcock
,
A. J.
,
1973
, “
The Interaction Between a Pair of Circular Cylinders Normal to a Stream
,”
J. Fluid Mech.
,
61
(
3
), pp.
499
511
.10.1017/S0022112073000832
14.
Zdravkovich
,
M. M.
,
1985
, “
Flow Induced Oscillations of Two Interfering Circular Cylinders
,”
J. Sound Vib.
,
101
(
4
), pp.
511
521
.10.1016/S0022-460X(85)80068-7
15.
Wang
,
Z. J.
, and
Zhou
,
Y.
,
2005
, “
Vortex Interaction in a Two Side-by-Side Cylinder Near-Wake
,”
Int. J. Heat Fluid Flow
,
26
(
3
), pp.
362
377
.10.1016/j.ijheatfluidflow.2004.10.006
16.
Alam
,
M. M.
, and
Zhou
,
Y.
,
2007
, “
Flow Around Two Side-by-Side Closely Spaced Circular Cylinders
,”
J. Fluids Struct.
,
23
(
5
), pp.
799
805
.10.1016/j.jfluidstructs.2006.12.002
17.
Sumner
,
D.
,
2010
, “
Two Circular Cylinders in Cross-Flow: A Review
,”
J. Fluids Struct.
,
26
(
6
), pp.
849
899
.10.1016/j.jfluidstructs.2010.07.001
18.
Chen
,
W.
,
Ji
,
C.
,
Alam
,
M. M.
, and
Yan
,
Y.
,
2022
, “
Three-Dimensional Flow Past Two Stationary Side-by-Side Circular Cylinders
,”
Ocean Eng.
,
244
(
15
), p.
110379
.10.1016/j.oceaneng.2021.110379
19.
Alam
,
M. M.
,
Moriya
,
M.
, and
Sakamoto
,
H.
,
2003
, “
Aerodynamic Characteristics of Two Side-by-Side Circular Cylinders and Application of Wavelet Analysis on the Switching Phenomenon
,”
J. Fluids Struct.
,
18
(
3–4
), pp.
325
346
.10.1016/j.jfluidstructs.2003.07.005
20.
Spivack
,
H. M.
,
1946
, “
Vortex Frequency and Flow Pattern in the Wake of Two Parallel Cylinders at Varied Spacing Normal to an Air Stream
,”
J. Aeronaut. Sci.
,
13
(
6
), pp.
289
301
.10.2514/8.11375
21.
Afgan
,
I.
,
Kahil
,
Y.
,
Benhamadouche
,
S.
, and
Sagaut
,
P.
,
2011
, “
Large Eddy Simulation of the Flow Around Single and Two Side-by-Side Cylinders at Subcritical Reynolds Numbers
,”
Phys. Fluids
,
23
(
7
), p.
075101
.10.1063/1.3596267
22.
Zhou
,
Y.
,
Zhang
,
H. J.
, and
Yiu
,
M. W.
,
2002
, “
The Turbulent Wake of Two Side-by-Side Circular Cylinders
,”
J. Fluid Mech.
,
458
, pp.
303
332
.10.1017/S0022112002007887
23.
Kim
,
H. J.
, and
Durbin
,
P. A.
,
1988
, “
Investigation of the Flow Between a Pair of Circular Cylinders in the Flopping Regime
,”
J. Fluid Mech.
,
196
, pp.
431
448
.10.1017/S0022112088002769
24.
Williamson
,
C. H. K.
,
1985
, “
Evolution of a Single Wake Behind a Pair of Bluff Bodies
,”
J. Fluid Mech.
,
159
, pp.
1
18
.10.1017/S002211208500307X
25.
Rooney
,
D. M.
,
Rodichok
,
J.
, and
Dolan
,
K.
,
1995
, “
Finite Aspect Ratio Effects on Vortex Shedding Behind Two Cylinders at Angles of Incidence
,”
ASME J. Fluids Eng.
,
117
(
2
), pp.
219
226
.10.1115/1.2817133
26.
Sarpkaya
,
T.
,
1979
, “
Vortex-Induced Oscillations: A Selective Review
,”
ASME J. Appl. Mech.
,
46
(
2
), pp.
241
258
.10.1115/1.3424537
27.
Irawan
,
Y. H.
,
Raza
,
S. A.
, and
Chern
,
M.
,
2022
, “
Numerical Predictions of Vibration Responses and Flow Energy Conversion Efficiency of Side-by-Side Cylinders at Moderate Reynolds Number
,”
Appl. Ocean Res.
,
129
, p.
103392
.10.1016/j.apor.2022.103392
28.
Dahl
,
J. M.
,
Hover
,
F. S.
,
Triantafyllou
,
M. S.
,
Dong
,
S.
, and
Karniadakis
,
G. E.
,
2007
, “
Resonant Vibrations of Bluff Bodies Cause Multivortex Shedding and High Frequency Forces
,”
Phys. Rev. Lett.
,
99
(
14
), p.
144503
.10.1103/PhysRevLett.99.144503
29.
Bearman
,
P. W.
,
2011
, “
Circular Cylinder Wakes and Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
27
(
5–6
), pp.
648
658
.10.1016/j.jfluidstructs.2011.03.021
30.
Sarpkaya
,
T.
,
2004
, “
A Critical Review of the Intrinsic Nature of Vortex-Induced Vibrations
,”
J. Fluids Struct.
,
19
(
4
), pp.
389
447
.10.1016/j.jfluidstructs.2004.02.005
31.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2008
, “
A Brief Review of Recent Results in Vortex-Induced Vibrations
,”
J. Wind Eng. Ind. Aerodyn.
,
96
(
6–7
), pp.
713
735
.10.1016/j.jweia.2007.06.019
32.
Dyrbye
,
C.
, and
Hansen
,
S. O.
,
1997
,
Wind Loads on Structures
,
Wiley
,
Hoboken, NJ
.
33.
Feng
,
C. C.
,
1968
, “
The Measurement of Vortex Effects in Flow Past Stationary and Oscillating Circular and D-Section Cylinders
,”
M.A.Sc. thesis
,
University of British Columbia
, Vancouver, BC, Canada.10.14288/1.0104049
34.
Bearman
,
P. W.
,
1984
, “
Vortex Shedding From Oscillating Bluff Bodies
,”
Annu. Rev. Fluid Mech.
,
16
(
1
), pp.
195
222
.10.1146/annurev.fl.16.010184.001211
35.
Williamson
,
C. H. K.
, and
Govardhan
,
R.
,
2004
, “
Vortex Induced Vibrations
,”
Annu. Rev. Fluid Mech.
,
36
(
1
), pp.
413
455
.10.1146/annurev.fluid.36.050802.122128
36.
Parkinson
,
G. V.
,
1974
, “
Mathematical Models of Flow-Induced Vibrations of Bluff Bodies
,”
Flow Induced Structural Vibrations
,
E.
Naudascher
, ed.,
Springer
,
Berlin, Germany
.
37.
Quadflieg
,
H.
,
1977
, “
Vortex-Induced Forces on a Pair of Circular Cylinders in Incompressible High Reynolds Number Flow
,”
Forsch. Ingenieurwes.
,
43
, pp.
9
18
.10.1007/BF02560496
38.
Zhou
,
Y.
,
Wang
,
Z. J.
,
So
,
R. M. C.
,
Xu
,
S. J.
, and
Jin
,
W.
,
2001
, “
Free Vibrations of Two Side-by-Side Cylinders in a Cross-Flow
,”
J. Fluid Mech.
,
443
, pp.
197
229
.10.1017/S0022112001005171
39.
King
,
L. V.
,
1914
, “
On the Convection of Heat From Small Cylinders in a Stream of Fluid: Determination of the Convective Constants of Small Platinum Wires With Applications to Hot Wire Anemometry
,”
Proc. R. Soc. London A
,
90
(
622
), pp.
563
570
.10.1098/rsta.1914.0023
40.
Collis
,
D. C.
, and
Williams
,
M. J.
,
1959
, “
Two-Dimensional Convection From Heated Wires at Low Reynolds Numbers
,”
J. Fluid Mech.
,
6
(
3
), pp.
357
384
.10.1017/S0022112059000696
41.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
,
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
3
rd ed.,
Wiley
,
Hoboken, NJ
.
42.
Roshko
,
A.
,
1953
, “
On the Development of Turbulent Wakes From Vortex Streets
,”
National Advisory Committee for Aeronautics
, Washington, DC, Report No.
NACA-TN-2913
.https://ntrs.nasa.gov/api/citations/19930092207/downloads/19930092207.pdf
43.
Farivar
,
D.
,
1981
, “
Turbulent Uniform Flow Around Cylinders of Finite Length
,”
AIAA J.
,
19
(
3
), pp.
275
281
.10.2514/3.7771
44.
Sakamoto
,
H.
, and
Arie
,
M.
,
1983
, “
Vortex Shedding From a Rectangular Prism and a Circular Cylinder Placed Vertically in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
126
, pp.
147
165
.10.1017/S0022112083000087
45.
Williamson
,
C. H. K.
,
1989
, “
Oblique and Parallel Modes of Vortex Shedding in the Wake of a Circular Cylinder at Low Reynolds Numbers
,”
J. Fluid Mech.
,
206
, pp.
579
627
.10.1017/S0022112089002429
46.
Kamemoto
,
K.
,
1976
, “
Formation and Interaction of Two Parallel Vortex Streets
,”
Bull. JSME
,
19
(
129
), pp.
283
290
.10.1299/jsme1958.19.283
47.
Sun
,
H.
,
Kim
,
E. S.
,
Nowakowski
,
G.
,
Mauer
,
E.
, and
Bernitsas
,
M. M.
,
2016
, “
Effect of Mass-Ratio, Damping, and Stiffness on Optimal Hydrokinetic Energy Conversion of a Single, Rough Cylinder in Flow Induced Motions
,”
Renewable Energy
,
99
, pp.
936
959
.10.1016/j.renene.2016.07.024
48.
Gao
,
X.
,
Shih
,
W.-H.
, and
Shih
,
W. Y.
,
2013
, “
Flow Energy Harvesting Using Piezoelectric Cantilevers With Cylindrical Extension
,”
IEEE Trans. Ind. Electron.
,
60
(
3
), pp.
1116
1118
.10.1109/TIE.2012.2187413
49.
Looney
,
S. W.
, and
Hagan
,
J. L.
,
2011
, “
Statistical Methods for Assessing Biomarkers and Analyzing Biomarker Data
,”
Handb. Stat.
,
27
, pp.
27
65
.10.1016/S0169-7161(07)27004-X
You do not currently have access to this content.