Abstract

A novel hydrodynamic model is used to study oscillatory flow of a particle-laden fluid driven by a torsionally oscillating disk. The present model is featured by a modified form of Navier–Stokes equations which is conceptually different than existing related models and enjoys relatively concise mathematical formulation. Explicit expressions are derived for the radial, azimuthal and axial velocities using the method of power series expansions of small amplitude parameter, and the derived solutions reduce to Rosenblat's earlier results for a clear fluid driven by a torsionally oscillating disk in the absence of suspended particles. The implications of the present results to dusty gases are discussed in detail with particular interest in the effects of suspended particles on the decay indexes and wavelengths of the induced oscillatory velocity fields. The results obtained in this work can be used to quantify the effects of suspended particles on particulate flow driven by a torsionally oscillating disk.

References

1.
Zandbergen
,
P. J.
, and
Dijkstra
,
D.
,
1987
, “
Von Karman Swirling Flows
,”
Annu. Rev. Fluid Mech.
,
19
(
1
), pp.
465
491
.10.1146/annurev.fl.19.010187.002341
2.
Wang
,
C. Y.
,
1991
, “
Exact Solutions of the Steady-State Navier-Stokes Equations
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
159
177
.10.1146/annurev.fl.23.010191.001111
3.
Jasmine
,
H. A.
, and
Gajjar
,
J. S. B.
,
2005
, “
Absolute Instability of the Von Karman, Bodewadt and Ekman Flows Between a Rotating Disc and a Stationary Lid
,”
Phil. Trans. R. Soc. A
,
363
(
1830
), pp.
1131
1144
.10.1098/rsta.2005.1555
4.
Magyari
,
E.
,
2019
, “
Scaling-Equivalent Rotating Flows
,”
J. Appl. Math. Mech.
,
101
(
3
), p.
e201900229
.10.1002/zamm.201900229
5.
Thomas
,
C.
,
Alveroglu
,
B.
,
Stephen
,
S. O.
,
Al-Malki
,
M. A. S.
, and
Hussain
,
Z.
,
2023
, “
Effect of Slip on the Linear Stability of the Rotating Disk Boundary Layer
,”
Phys. Fluids
,
35
, p.
084118
.10.1063/5.0162147
6.
Alfredsson
,
P. H.
,
Kato
,
K.
, and
Lingwood
,
R. J.
,
2024
, “
Flow Over Rotating Disks and Cones
,”
Annu. Rev. Fluid Mech.
,
56
(
1
), pp.
45
68
.10.1146/annurev-fluid-121021-043651
7.
Cui
,
J.
, and
Tang
,
H.
,
2024
, “
A Review on Flow Instability in Hydro-Viscous Drive
,”
Phys. Fluids
,
36
, p.
041301
.10.1063/5.0203298
8.
Rosenblat
,
S.
,
1959
, “
Torsional Oscillation of a Plane in a Viscous Fluid
,”
J. Fluid Mech.
,
6
(
2
), pp.
206
220
.10.1017/S002211205900057X
9.
Benney
,
D. J.
,
1964
, “
The Flow Induced by a Disk Oscillating in Its Own Plane
,”
J. Fluid Mech.
,
18
(
3
), pp.
385
391
.10.1017/S0022112064000283
10.
Riley
,
N.
,
1965
, “
Oscillating Viscous Flow
,”
Mathematika
,
12
(
2
), pp.
161
175
.10.1112/S0025579300005283
11.
Stuart
,
J. T.
,
1966
, “
Double Boundary Layers in Oscillatory Viscous Flow
,”
J. Fluid Mech.
,
24
(
4
), pp.
673
687
.10.1017/S0022112066000910
12.
Duck
,
P. W.
,
1981
, “
Torsional Oscillation of a Finite Disk
,”
SIAM J. Appl. Math.
,
41
(
2
), pp.
247
264
.10.1137/0141020
13.
Chawla
,
S. S.
, and
Srivastva
,
P. K.
,
2006
, “
On the Bodewadt-Rosenblat Flow
,”
J. Appl. Math. Phys.
,
57
, pp.
793
814
.10.1007/s00033-006-0064-7
14.
Park
,
H. M.
,
2018
, “
Comparison of the Pseudo-Single-Phase Continuum Model and the Homogeneous Single-Phase Model of Nanofluids
,”
Int. J. Heat Mass Transfer
,
120
, pp.
106
116
.10.1016/j.ijheatmasstransfer.2017.12.027
15.
Saha
,
G.
, and
Paul
,
M. C.
,
2018
, “
Investigation of the Characteristics of Nanofluids Flow and Heat Transfer in a Pipe Using a Single Phase Model
,”
Inter. Commun. Heat Mass Transfer
,
93
, pp.
48
59
.10.1016/j.icheatmasstransfer.2018.03.001
16.
Turkyilmazoglu
,
M.
,
2020
, “
Single Phase Nanofluids in Fluid Mechanics and Their Hydrodynamic Linear Stability Analysis
,”
Comput. Methods Programs Biomed.
,
187
, p.
105171
.10.1016/j.cmpb.2019.105171
17.
Klazly
,
M.
,
Mahabaleshwar
,
U. S.
, and
Bognar
,
G.
,
2022
, “
Comparison of Single-Phase Newtonian and non-Newtonian Nanofluid and Two-Phase Models for Convective Heat Transfer of Nanofluid Flow in Backward-Facing Step
,”
J. Mol. Liq.
,
361
, p.
119607
.10.1016/j.molliq.2022.119607
18.
Jackson
,
R.
,
1997
, “
Locally Averaged Equations of Motion for a Mixture of Identical Spherical Particles and a Newtonian Fluid
,”
Chem. Eng. Sci.
,
52
(
15
), pp.
2457
2469
.10.1016/S0009-2509(97)00065-1
19.
Zhang
,
D. Z.
, and
Prosperetti
,
A.
,
1997
, “
Momentum and Energy Equations for Disperse Two-Phase Flows and Their Closure for Dilute Suspensions
,”
Int. J. Multiphase Flow
,
23
(
3
), pp.
425
453
.10.1016/S0301-9322(96)00080-8
20.
Saffman
,
P. G.
,
1962
, “
On the Stability of Laminar Flow of a Dusty Gas
,”
J. Fluid Mech.
,
13
(
1
), pp.
120
128
.10.1017/S0022112062000555
21.
Michael
,
D. H.
, and
Miller
,
D. A.
,
1966
, “
Plane Parallel Flow of a Dusty Gas
,”
Mathematika
,
13
(
1
), pp.
97
109
.10.1112/S0025579300004289
22.
Rudyak
,
V. Y.
,
Isakov
,
E. B.
, and
Bord
,
E. G.
,
1997
, “
Hydrodynamic Stability of the Poiseuille Flow of Dispersed Fluid
,”
J. Aerosol Sci.
,
28
(
1
), pp.
53
66
.10.1016/S0021-8502(96)00056-0
23.
Boronin
,
S. A.
,
2008
, “
Investigation of the Stability of a Plane Channel Suspension Flow With Account for Finite Particle Volume Fraction
,”
Fluid Dyn.
,
43
(
6
), pp.
873
884
.10.1134/S0015462808060069
24.
Klinkenberg
,
J.
,
de Lange
,
H. C.
, and
Brandt
,
L.
,
2011
, “
Modal and Non-Modal Stability of Particle-Laden Channel Flow
,”
Phys. Fluids
,
23
, p.
064110
.10.1063/1.3599696
25.
Rouquier
,
A.
,
Potherat
,
A.
, and
Pringle
,
C. C. T.
,
2019
, “
An Instability Mechanism for Particulate Pipe Flow
,”
J. Fluid Mech.
,
870
, pp.
247
265
.10.1017/jfm.2019.264
26.
Sozza
,
A.
,
Cencini
,
M.
,
Musacchio
,
S.
, and
Boffetta
,
G.
,
2022
, “
Instability of a Dusty Kolmogorov Flow
,”
J. Fluid Mech.
,
931
, p.
A26
.10.1017/jfm.2021.971
27.
Ru
,
C. Q.
,
2024
, “
Stokes Second Flow Problem Revisited for Particle-Fluid Suspensions
,”
ASME J. Appl. Mech.
,
91
, p.
041010
.10.1115/1.4064206
28.
Turkyilmazoglu
,
M.
,
2022
, “
Bodewadt Flow and Heat Transfer of Dusty Fluid With Navier Slip
,”
Arch. Mech.
,
74
(
2–3
), pp.
157
172
.10.24423/aom.3930
You do not currently have access to this content.