Abstract

The flow in a regenerative hydrogen pump used in a proton exchange membrane (PEM) fuel cell system is complex, including velocity mixing, streamline distortion, swirling flow, corner flow, and possible boundary separation. Experimental measurement and computational fluid dynamics (CFD) prediction are the main methods used to evaluate such performance. In this work, regenerative hydrogen designed for fuel cell electric vehicles with an impeller diameter of 91 mm and a shaft speed of 22,000 rpm is tested with a mixture of nitrogen, hydrogen, and water vapor. During the test, the flowrate and shaft speed ranges are 151–881 L/min and 8000–22,000 rpm, respectively. The inlet pressure and temperature are 171 kPa and 66 °C, respectively. Then, the flow is predicted by the k − ε model, the renormalization group (RNG) k − ε model, the explicit algebraic Reynolds stress models (EARSM) and the shear-stress transport (SST) detached eddy simulation (DES) model. The differences between the tested and predicted performances are compared. With these results, the velocity distribution in the side channel, the radial force of the impeller and casting, and the changes in the downstream pressure and velocity are analyzed in consideration of the ability of the turbulence models to simulate each characteristic flow. On this basis, the differences and abilities of the turbulence models for predicting the flow in regenerative hydrogen pumps are summarized.

References

1.
Badami
,
M.
, and
Mura
,
M.
,
2010
, “
Theoretical Model With Experimental Validation of a Regenerative Blower for Hydrogen Recirculation in a PEM Fuel Cell System
,”
Energy Convers. Manage.
,
51
(
3
), pp.
553
560
.10.1016/j.enconman.2009.10.022
2.
Sixsmith
,
H.
, and
Altmann
,
H.
,
1977
, “
A Regenerative Compressor
,”
ASME J. Manuf. Sci. Eng.
,
99
(
3
), pp.
637
647
.10.1115/1.3439291
3.
Wilcox
,
D. C.
,
1993
,
Turbulence Modeling for CFD
,
DCW Industries, Inc
.,
La Canada, CA
.
4.
Escue
,
A.
, and
Cui
,
J.
,
2009
, “
Comparison of Turbulence Models in Simulating Swirling Pipe Flows
,”
Appl. Math. Modell.
,
34
(
10
), pp.
2840
2849
.10.1016/j.apm.2009.12.018
5.
Mehdizadeh
,
O. Z.
,
Temmerman
,
L
,
Tartinville
,
B.
, and
Hirsch
,
C.
,
2012
, “
Applications of EARSM Turbulence Models to Internal Flows
,”
ASME
Paper No. GT2012-68886.10.1115/GT2012-68886
6.
Ali
,
S.
,
Elliott
,
K. J.
,
Savory
,
E.
,
Zhang
,
C.
,
Martinuzzi
,
R. J.
, and
Lin
,
W. E.
,
2016
, “
Investigation of the Performance of Turbulence Models With Respect to High Flow Curvature in Centrifugal Compressors
,”
ASME J. Fluids Eng.
,
138
(
5
), p. 051101.10.1115/1.4031779
7.
Raheel
,
M.
, and
Engeda
,
A.
,
2002
, “
Current Status, Design and Performance Trends for the Regenerative Flow Compressors and Pumps
,”
ASME
Paper No. IMECE2002-39594.10.1115/IMECE2002-39594
8.
Engeda
,
A.
, and
Raheel
,
M.
,
2003
, “
Theory and Design of the Regenerative Flow Compressor
,”
Proceedings of the International Gas Turbine Congress
,
Tokyo
, Nov. 2–7, pp.
1
9
.https://typeset.io/pdf/theory-and-design-ofthe-regenerative-flow-compressor-1i842c8ntf.pdf
9.
Raheel
,
M.
, and
Engeda
,
A.
,
2005
, “
Performance Characteristics of Regenerative Flow Compressors for Natural Gas Compression Application
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
7
14
.10.1115/1.1860569
10.
Song
,
J.
,
Raheel
,
M.
, and
Engeda
,
A.
,
2003
, “
A Compressible Flow Theory for Regenerative Compressors With Aerofoil Blades
,”
Proc. Inst. Mech. Eng. Part C
,
217
(
11
), pp.
1241
1257
.10.1243/095440603771665269
11.
Engeda
,
A.
, and
Elkacimi
,
Y.
,
2008
, “
A Regenerative Flow Compressor as a Secondary Air Pump for Engine Emission Control
,”
Proc. Inst. Mech. Eng. Part C
,
222
(
9
), pp.
1707
1715
.10.1243/09544062JMES958
12.
Kang
,
S.
, and
Ryu
,
S.
,
2009
, “
Reynolds Number Effects on the Performance Characteristic of a Small Regenerative Pump
,”
ASME J. Fluids Eng.
,
131
(
6
), p.
061104
.10.1115/1.3026629
13.
Badami
,
M.
, and
Mura
,
M.
,
2012
, “
Leakage Effects on the Performance Characteristics of a Regenerative Blower
,”
Energy Convers. Manage.
,
55
, pp.
20
25
.10.1016/j.enconman.2011.10.002
14.
Badami
,
M.
, and
Mura
,
M.
,
2011
, “
Setup and Validation of a Regenerative Compressor Model Applied
,”
Energy Convers. Manage.
,
52
(
5
), pp.
2157
2164
.10.1016/j.enconman.2010.10.044
15.
Badami
,
M.
, and
Mura
,
M.
,
2012
, “
Comparison Between 3D and 1D Simulations of a Regenerative Blower for Fuel
,”
Energy Convers. Manage.
,
55
, pp.
93
100
.10.1016/j.enconman.2011.10.003
16.
Lee
,
C.
, and
Kil
,
H. G.
,
2014
, “
The Design, Performance and CFD Analyses of Regenerative Blower
,” 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (
SIMULTECH
),
Vienna, Austria
,
Aug. 28–30
, pp.
751
755
.10.5220/0005104007510755
17.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill Publishing Co
,
New York
.
18.
Ansys Inc.
,
2015
,
Ansys Fluent Theory Guide
,
Ansys Inc
,
Canonsburg
.
19.
Orszag
,
S. A.
,
Yakhot
,
V.
,
Flannery
,
W. S.
,
Boysan
,
F.
,
Choudhury
,
D.
,
Maruzewski
,
J.
, and
Patel
,
B.
,
1993
, “
Renormalization Group Modeling and Turbulence Simulations
,”
International Conference on Near-Wall Turbulent Flows
,
Tempe, Arizona
, Mar. 15–17, pp. 1031–1046 .
20.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Years of Experience With the SST Turbulence Model
,”
Heat Mass Transfer.
,
4
, pp.
625
632
.https://www.researchgate.net/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model
21.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
22.
Wallin
,
S.
, and
Johansson
,
A.
,
2000
, “
Explicit Algebraic Reynolds Stress Model for Incompressible and Compressible Turbulent Flows
,”
J. Fluid Mech.
,
403
, pp.
89
132
.10.1017/S0022112099007004
23.
Menter
,
F. R.
,
Garbaruk
,
A. V.
, and
Egorov
,
Y.
,
2009
, “
Explicit Algebraic Reynolds Stress Models for Anisotropic Wall-Bounded Flows
,”
EUCASS – 3rd European Conference for Aero-Space Sciences
,
Versailles
, July 3–8, pp.
89
104
.10.1051/eucass/201203089
24.
Shur
,
M.
,
Spalart
,
P. R.
,
Strelets
,
M.
, and
Travin
,
A.
,
1999
, “
Detached-Eddy Simulation of an Airfoil at High Angle of Attack
,”
4th International Symposium on Engineering Turbulence Modeling and Experiments
,
Corsica, France
, May 24–26, pp.
669
678
.10.1016/B978-008043328-8/50064-3
You do not currently have access to this content.