Abstract

Stability studies were conducted on a single-stage, low-speed compressor with different rotor loading-distribution designs under a uniform inlet, 10% intensity, and 20% intensity total tip pressure distortion inlet conditions via numerical calculations, theoretical model predictions, and experimental methods. The steady numerical performance was in basic agreement with experimentally measured performance. The theoretical prediction model showed an error within 1.5%, which is less than that of the steady numerical calculation. The total tip pressure distortion reduced flow stability. Conversely, the design of moving the rotor loading axially rearward significantly improved the flow stability. The blade loading analysis showed that the radial distortion caused a radial redistribution of rotor loading. The increase in the rotor-tip loading due to tip distortion was the main reason for the reduced flow stability. In contrast, the design of moving the rotor loading axially rearward reduced the rotor-tip leading-edge loading, enhancing the flow stability. Moreover, an analysis of the unsteady flow validated the findings of the blade loading analyses. It was found that the periodic evolution of the tip leakage vortex (TLV) had an adverse effect on flow stability. In addition, the modified rotors could prevent the tip leakage flow (TLF) from spilling from the leading edge and prevent the interaction of different diffusing regions, decreasing the probability of flow separation.

References

1.
Stenning
,
A. H.
,
1980
, “
Inlet Distortion Effects in Axial Compressors
,”
ASME J. Fluids Eng.
,
102
(
1
), pp.
7
13
.10.1115/1.3240630
2.
Schmidt
,
J. F.
, and
Ruggeri
,
R. S.
,
1978
, “
Performance With and Without Inlet Radial Distortion of a Transonic Fan Stage Designed for Reduced Loading in the Tip Region
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TP-1294
.https://ntrs.nasa.gov/api/citations/19780022114/downloads/19780022114.pdf
3.
Fabian
,
W.
,
Felix
,
H.
,
Christoph
,
B.
,
Maximilian
,
J.
, and
Heinz-Peter
,
S.
,
2015
, “
Stall Inception in a Transonic Compressor With Inflow Distortion
,”
Proceedings of the 14th International Symposium on Unsteady Aerodynamics
, Stockholm, Sweden, Sept. 8–11, pp.
92
102
.
4.
Voytovych
,
D. M.
,
Xia
,
G.
,
Lian
,
C.
, and
Merkle
,
C. L.
,
2010
, “
Investigation of Effects of Radial Distortion on Transonic Fan Behavior
,”
ASME
Paper No. FEDSM-ICNMM2010-30512.10.1115/FEDSM-ICNMM2010-30512
5.
Xu
,
D.
,
He
,
C.
,
Sun
,
D.
, and
Sun
,
X.
,
2021
, “
Stall Inception Prediction of Axial Compressors With Radial Inlet Distortions
,”
Aerosp. Sci. Technol.
,
109
, p.
106433
.10.1016/j.ast.2020.106433
6.
Sandercock
,
D. M.
, and
Sanger
,
N. L.
,
1974
, “
Some Observations of the Effects of Radial Distortions on Performance of a Transonic Rotating Blade Row
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TN-D-7824
.https://ntrs.nasa.gov/api/citations/19750004173/downloads/19750004173.pdf
7.
Du
,
J.
,
Lin
,
F.
,
Chen
,
J.
,
Morris
,
S. C.
, and
Nie
,
C.
,
2012
, “
Numerical Study on the Influence Mechanism of Inlet Distortion on the Stall Margin in a Transonic Axial Rotor
,”
J. Therm. Sci.
,
21
(
3
), pp.
209
214
.10.1007/s11630-012-0537-2
8.
Zhang
,
J.
,
Lin
,
F.
,
Chen
,
J.
, and
Nie
,
C.
,
2009
, “
A Study of Stall Inceptions in a Low-Speed Axial-Flow Compressor With Various Radial Loadings
,”
ASME
Paper No. GT2009-59850.10.1115/GT2009-59850
9.
Toge
,
T. D.
, and
Pradeep
,
A. M.
,
2017
, “
Experimental Investigation of Stall Inception and Its Propagation in a Contra Rotating Axial Fan Under Radial Inflow Distortion
,”
ASME
Paper No. GT2017-63432.10.1115/GT2017-63432
10.
Li
,
F.
,
Li
,
J.
,
Dong
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2017
, “
Influence of SPS Casing Treatment on Axial Flow Compressor Subjected to Radial Pressure Distortion
,”
Chin. J. Aeronaut.
,
30
(
2
), pp.
685
697
.10.1016/j.cja.2016.10.023
11.
Li
,
J.
,
Du
,
J.
,
Geng
,
S.
,
Li
,
F.
, and
Zhang
,
H.
,
2020
, “
Tip Air Injection to Extend Stall Margin of Multi-Stage Axial Flow Compressor With Inlet Radial Distortion
,”
Aerosp. Sci. Technol.
,
96
, p.
105554
.10.1016/j.ast.2019.105554
12.
Liu
,
X.
,
Teng
,
J.
,
Yang
,
J.
,
Sun
,
X.
,
Sun
,
D.
,
He
,
C.
, and
Du
,
J.
,
2019
, “
Calculation of Stall Margin Enhancement With Micro-Tip Injection in an Axial Compressor
,”
ASME J. Fluids Eng.
,
141
(
8
), p.
81109
.10.1115/1.4042561
13.
Köller
,
U.
,
Mönig
,
R.
,
Küsters
,
B.
, and
Schreiber
,
H.
,
1999
, “
Development of Advanced Compressor Airfoils for Heavy-Duty Gas Turbines: Part I—Design and Optimization
,”
ASME
Paper No. 99-GT-095.10.1115/99-GT-095
14.
Kodancha
,
P.
, and
Salunkhe
,
P. B.
,
2021
, “
Influence of Blade Tip Surface Roughness on the Performance of a Single-Stage Axial Flow Compressor
,”
ASME J. Fluids Eng.
,
143
(
6
), p.
061207
.10.1115/1.4049935
15.
Kumar
,
A.
,
John
,
J. T.
,
Chhugani
,
H.
,
Kumar
,
A.
, and
Pradeep
,
A. M.
,
2022
, “
Aerodynamics of Sweep in a Tandem-Bladed Subsonic Axial Compressor Rotor
,”
ASME J. Fluids Eng.
,
144
(
12
), p.
121203
.10.1115/1.4055054
16.
Wang
,
J.
, and
Kruyt
,
N. P.
,
2022
, “
Effects of Sweep, Dihedral and Skew on Aerodynamic Performance of Low-Pressure Axial Fans With Small Hub-to-Tip Diameter Ratio
,”
ASME J. Fluids Eng.
,
144
(
1
), p.
011203
.10.1115/1.4051542
17.
Korn
,
D. G.
,
1978
, “
Numerical Design of Transonic Cascades
,”
J. Comput. Phys.
,
29
(
1
), pp.
20
34
.10.1016/0021-9991(78)90106-7
18.
Schmidt
,
E.
,
1980
, “
Computation of Supercritical Compressor and Turbine Cascades With a Design Method for Transonic Flows
,”
ASME J. Eng. Power
,
102
(
1
), pp.
68
74
.10.1115/1.3230236
19.
Ganesh
,
S.
, and
Prasad
,
B.
,
2012
, “
Iterative Inverse Design Method With AUSM+-Up Scheme Implemented on Unstructured Grids
,”
J. Propul. Power
,
28
(
1
), pp.
16
26
.10.2514/1.B34216
20.
Yang
,
C.
,
Wu
,
H.
, and
Liang
,
Y.
,
2019
, “
A Novel Three-Dimensional Inverse Method for Axial Compressor Blade Surface Design
,”
Arabian J. Sci. Eng.
,
44
(
12
), pp.
10169
10179
.10.1007/s13369-019-04083-3
21.
Ergin
,
C.
,
Verstraete
,
T.
, and
Saracoglu
,
B. H.
,
2024
, “
The Design and Optimization of Additively Manufactured Radial Compressor of a Miniature Gas Turbine Engine
,”
ASME J. Fluids Eng.
,
146
(
7
), p.
071108
.10.1115/1.4065098
22.
Akira
,
O.
,
Meng-Sing
,
L.
, and
Shigeru
,
O.
,
2002
, “
Transonic Axial-Flow Blade Shape Optimization Using Evolutionary Algorithm and Three-Dimensional Navier–Stokes Solver
,”
AIAA
Paper No. 2002-5642.10.2514/6.2002-5642
23.
Samad
,
A.
,
Kim
,
K. Y.
,
Goel
,
T.
,
Haftka
,
R. T.
, and
Shyy
,
W.
,
2008
, “
Multiple Surrogate Modeling for Axial Compressor Blade Shape Optimization
,”
J. Propul. Power
,
24
(
2
), pp.
301
310
.10.2514/1.28999
24.
Luo
,
J.
,
Zhou
,
C.
, and
Liu
,
F.
,
2014
, “
Multipoint Design Optimization of a Transonic Compressor Blade by Using an Adjoint Method
,”
ASME J. Turbomach.
,
136
(
5
), p.
051005
.10.1115/1.4025164
25.
Wang
,
J.
, and
Kruyt
,
N. P.
,
2022
, “
Design for High Efficiency of Low-Pressure Axial Fans With Small Hub-to-Tip Diameter Ratio by the Vortex Distribution Method
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081201
.
26.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
ASME Trans. Am. Soc. Mech. Eng.
,
77
(
4
), pp.
455
467
.10.1115/1.4014389
27.
Mathioudakis
,
K.
, and
Breugelmans
,
F. A. E.
,
1985
, “
Development of Small Rotating Stall in a Single Stage Axial Compressor
,”
ASME
Paper No. 85-GT-227.10.1115/85-GT-227
28.
Greitzer
,
E. M.
, and
Moore
,
F. K.
,
1986
, “
A Theory of Post-Stall Transients in Axial Compression Systems: Part II—Application
,”
ASME J. Eng. Gas Turbines Power
,
108
(
2
), pp.
231
239
.10.1115/1.3239893
29.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
123
.10.1115/1.2927406
30.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.10.1115/1.2929209
31.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.10.1115/1.2750674
32.
Chen
,
J.
,
Hathaway
,
M. D.
, and
Herrick
,
G. P.
,
2008
, “
Prestall Behavior of a Transonic Axial Compressor Stage Via Time-Accurate Numerical Simulation
,”
ASME J. Turbomach.
,
130
(
4
), p.
041014
.10.1115/1.2812968
33.
Zaki
,
M.
,
Sankar
,
L. N.
, and
Menon
,
S.
,
2010
, “
Hybrid Reynolds-Averaged Navier-Stokes/Kinetic-Eddy Simulation of Stall Inception in Axial Compressors
,”
J. Propul. Power
,
26
(
6
), pp.
1276
1282
.10.2514/1.50195
34.
Wu
,
Y.
,
Wu
,
J.
,
Zhang
,
G.
, and
Chu
,
W.
,
2014
, “
Experimental and Numerical Investigation of Flow Characteristics Near Casing in an Axial Flow Compressor Rotor at Stable and Stall Inception Conditions
,”
ASME J. Fluids Eng.
,
136
(
11
), p.
111106
.10.1115/1.4027178
35.
Sun
,
L.
,
Yang
,
J.
,
Liu
,
X.
,
Sun
,
D.
, and
Dong
,
X.
,
2024
, “
Diagnosis of Unsteady Disturbance Characteristics Induced by the Tip Leakage Vortex in a Compressor Based on Data-Driven Modal Decomposition Methods
,”
Phys. Fluids
,
36
(
5
), p.
055151
.10.1063/5.0205339
36.
Xu
,
D.
,
Dong
,
X.
,
Zhou
,
C.
,
Sun
,
D.
,
Gui
,
X.
, and
Sun
,
X.
,
2021
, “
Effect of Rotor Axial Blade Loading Distribution on Compressor Stability
,”
Aerosp. Sci. Technol.
,
119
, p.
107230
.10.1016/j.ast.2021.107230
37.
Sun
,
X.
,
Liu
,
X.
,
Hou
,
R.
, and
Sun
,
D.
,
2013
, “
A General Theory of Flow-Instability Inception in Turbomachinery
,”
AIAA J.
,
51
(
7
), pp.
1675
1687
.10.2514/1.J052186
38.
He
,
C.
,
Ma
,
Y.
,
Liu
,
X.
,
Sun
,
D.
, and
Sun
,
X.
,
2018
, “
Aerodynamic Instabilities of Swept Airfoil Design in Transonic Axial-Flow Compressors
,”
AIAA J.
,
56
(
5
), pp.
1878
1893
.10.2514/1.J056053
39.
Fang
,
Y.
,
Sun
,
D.
,
Xu
,
D.
,
He
,
C.
, and
Sun
,
X.
,
2023
, “
Rapid Prediction of Compressor Rotating Stall Inception Using Arnoldi Eigenvalue Algorithm
,”
AIAA J.
,
61
(
8
), pp.
3566
3578
.10.2514/1.J062482
40.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluids Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
41.
Hewkin-Smith
,
M.
,
Pullan
,
G.
,
Grimshaw
,
S. D.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2019
, “
The Role of Tip Leakage Flow in Spike-Type Rotating Stall Inception
,”
ASME J. Turbomach.
,
141
(
6
), p.
061010
.10.1115/1.4042250
You do not currently have access to this content.