Abstract

This research employs the Reynolds stress model (RSM) to replicate compressibility effects on turbulence. Academic studies have consistently highlighted the critical role of the interaction between pressure–strain correlations and dissipation mechanisms in advancing the accuracy of RSM predictions. The primary objective of this study is to enhance predictive precision by incorporating compressibility corrections into both the standard turbulent dissipation model and the pressure–strain correlation model. It is demonstrated that the incompressible model equation for turbulent dissipation fails to perform adequately in compressible turbulence within high-speed shear flows, even when compressible pressure–strain models are included. To address this limitation, a compressibility correction for the Cϵ1 coefficient is proposed, enabling accurate computations of compressible homogeneous shear flows and compressible mixing layers. The proposed model is derived from an exact temporal derivative equation of fluctuating velocity, establishing a relationship between Cϵ1 and key compressibility parameters: the turbulent Mach number, the gradient Mach number, and the convective Mach number. A custom computational code employing a finite difference scheme was developed specifically to simulate compressible turbulent mixing layers. Results are presented for compressible homogeneous shear flows under various initial conditions, compared with direct numerical simulation (DNS) data, as well as for compressible mixing layers using experimental data. The findings indicate that the proposed model demonstrates strong potential for improving predictions in compressible turbulence scenarios.

References

1.
Zeman
,
O.
,
1990
, “
Dilatation Dissipation: The Concept and Application in Modeling Compressible Mixing Layers
,”
Phys. Fluids A
,
2
(
2
), pp.
178
188
.10.1063/1.857767
2.
El Baz
,
A. M.
, and
Launder
,
B. E.
,
1993
, “
Second-Moment Modelling of Compressible Mixing Layers
,”
Engineering Turbulence Modelling and Experiments
,
W.
Rodi
, and
F.
Martelli
, eds.,
Elsevier
,
Oxford, UK
, pp.
63
72
.
3.
Sarkar
,
S.
,
1992
, “
The Pressure-Dilatation Correlation in Compressible Flows
,”
Phys. Fluids A
,
4
(
12
), pp.
2674
2682
.10.1063/1.858454
4.
Speziale
,
C. G.
, and
Sarkar
,
S.
,
1991
, “
Second-Order Closure Models for Supersonic Turbulent Flows
,”
AIAA
Paper No. 1991-217.10.2514/6.1991-217
5.
Speziale
,
C. G.
,
Abid
,
R.
, and
Mansour
,
N.
,
1985
, “
Evaluation of Reynolds-Stress Turbulence Closures in Compressible Homogeneous Shear Flow
,”
ZMPS
,
17
, pp.
1
27
.10.1007/978-3-0348-9229-2_37
6.
Sarkar
,
S.
,
1995
, “
The Stabilizing Effects of Compressibility in Turbulent Shear Flow
,”
J. Fluid Mech.
,
282
, pp.
163
186
.10.1017/S0022112095000085
7.
Simone
,
A.
,
Coleman
,
G. N.
, and
Cambon
,
C.
,
1997
, “
The Effect of Compressibility on Turbulent Shear Flow: A Rapid Distortion-Theory and Direct Numerical Simulation Study
,”
J. Fluid Mech.
,
330
, pp.
307
338
.10.1017/S0022112096003837
8.
Hamba
,
F.
,
1999
, “
Effects of Pressure Fluctuations on Turbulence Growth in Compressible Homogeneous Shear Flow
,”
Phys. Fluids
,
11
(
6
), pp.
1623
1635
.10.1063/1.870023
9.
Adumitroaie
,
V.
,
Ristorcelli
,
J. R.
, and
Taulbee
,
D. B.
,
1999
, “
Progress in Favre Reynolds Stress Closures for Compressible Flows
,”
Phys. Fluids
,
11
(
9
), pp.
2696
2719
.10.1063/1.870130
10.
Hung
,
S.
, and
Fu
,
S.
,
2008
, “
Modeling of Pressure-Strain Correlation in Compressible Turbulent Flow
,”
Acta Mech. Sin.
,
24
(
1
), pp.
37
43
.10.1007/s10409-007-0127-9
11.
Klifi
,
H.
, and
Lili
,
T.
,
2013
, “
A Compressibility Correction of the Pressure Strain Correlation Model in Turbulent Flow
,”
C. R. Méc.
,
341
(
7
), pp.
567
580
.10.1016/j.crme.2013.04.003
12.
Khlifi
,
H.
,
Abdallah
,
J.
,
Aïcha
,
H.
, and
Taïeb
,
L.
,
2010
, “
A Priori Evaluation of the Pantano and Sarkar Model in Compressible Homogeneous Shear Flows
,”
C. R. Méc.
,
339
(
1
), pp.
27
34
.10.1016/j.crme.2010.12.008
13.
Park
,
C. H.
, and
Park
,
S. O.
,
2005
, “
Compressible Turbulence Model for the Pressure Strain Correlation
,”
J. Turbul.
,
6
(
2
), pp.
1
24
.10.1080/14685240500055095
14.
Khlifi
,
H.
, and
Lili
,
T.
,
2016
, “
On the Compressibility Effects in Mixing Layers
,”
Therm. Sci.
,
20
(
5
), pp.
1473
1484
.10.2298/TSCI130619059K
15.
Foysi
,
H.
, and
Sarkar
,
S.
,
2010
, “
The Compressible Mixing Layer: An Large Eddy Simulation (LES) Study
,”
Theor. Comput. Fluid Dyn.
,
24
(
6
), pp.
565
588
.10.1007/s00162-009-0176-8
16.
Pantano
,
C.
, and
Sarkar
,
S.
,
2002
, “
A Study of Compressibility Effects in the High-Speed Turbulent Shear Layer Using Direct Simulation
,”
J. Fluid Mech.
,
451
, pp.
329
371
.10.1017/S0022112001006978
17.
Goebel
,
S. G.
, and
Dutton
,
J. C.
,
1991
, “
Experimental Study of Compressible Turbulent Mixing Layers
,”
AIAA J.
,
29
, pp.
538
546
.10.2514/3.10617
18.
Samimy
,
M.
, and
Elliot
,
G. S.
,
1990
, “
Effects of Compressibility on the Characteristics of the Free Shear Layers
,”
AIAA J.
,
28
(
3
), pp.
439
445
.10.2514/3.10412
19.
Wang
,
X.
,
Wang
,
J.
, and
Chen
,
S.
,
2022
, “
Compressibility Effects on Statistics and Coherent Structures of Compressible Turbulent Mixing Layers
,”
J. Fluid Mech.
,
947
, p.
A38
.10.1017/jfm.2022.660
20.
Gomez
,
C. A.
, and
Girimaji
,
S. S.
,
2013
, “
Toward Second-Moment Closure Modeling of Compressible Shear Flows
,”
J. Fluid Mech.
,
733
, pp.
325
369
.10.1017/jfm.2013.428
21.
Grigoriev
,
I. A.
,
Wallin
,
S.
,
Brouthouneer
,
G.
, and
Johansson
,
V.
,
2013
, “
A Realizable Explicit Algebraic Reynolds Stress Model for Compressible Turbulent Flow With Significant Mean Dilatation
,”
Phys. Fluids
,
25
, p.
105112
.10.1063/1.4825282
22.
Hanjalic
,
K.
, and
Launder
,
B. E.
,
1972
, “
A Reynolds Stress Model and Its Application to Thin Shear Flow
,”
J. Fluid Mech.
,
52
, pp.
609
638
.10.1017/S002211207200268X
23.
Fujiwara
,
H.
, and
Arakawa
,
C.
,
1996
, “
Modeling of Compressible Turbulent Flows With Emphasis on Pressure-Dilatation Correlation
,”
Eng. Turbul. Model. Exp.
,
3
, pp.
151
160
.10.1016/B978-0-444-82463-9.50021-6
24.
Fujiwara
,
H.
,
Matsuo
,
Y.
, and
Arakawa
,
C.
,
2000
, “
A Turbulence Model for the Pressure–Strain Correlation Term Accounting for Compressibility Effects
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
354
358
.10.1016/S0142-727X(00)00020-5
25.
Rotta
,
J. C.
,
1975
, “
Statistische Theorie Nichthomogener Turbulenz
,”
Z. Phys.
,
129
, pp.
541
572
.10.1007/BF01330059
26.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
27.
Heinz
,
S.
,
2003
,
Statistical Mechanics of Turbulent Flows
,
Springer Verlag
,
Berlin, Germany
.
28.
Guezengar
,
D.
,
Guillard
,
H.
, and
Dussauge
,
J.-P.
,
2000
, “
Modeling Dissipation Equation in Supersonic Turbulent Mixing Layers With High-Density Gradients
,”
AIAA J.
,
38
(
9
), pp.
1650
1655
.10.2514/2.1148
You do not currently have access to this content.