Abstract

Propulsor noise is a major contributor to underwater radiated noise from vessels. The pump jet propulsor (PJP), widely used in underwater vehicles, is studied here for its noncavitation noise through experimental and numerical simulations. A model of the axial-flow PJP is created, and large eddy simulation (LES) with acoustic analogy methods is used to calculate flow noise. A test platform is developed with a recirculating water pipeline to measure head, shaft power, and sound pressure levels. Experimental and simulation results are compared. The head measurement error is minimal, with a maximum of 0.68%, and the flow noise frequency spectrum closely matches the experimental data. The total sound pressure level within the 10–4000 Hz range has an error of less than 5 dB, confirming the simulation's accuracy. The study proposes a biomimetic noise reduction design inspired by owl wing serrations. A parametric analysis of different serrated shapes shows that the curved serrated impeller has a maximum efficiency loss of 0.58%, significantly reducing low-frequency noise. It lowers the first four blade harmonics by 10.93 dB and reduces the total sound pressure level by 3.49 dB in the 25–4000 Hz range.

References

1.
Weng
,
K.
,
Sun
,
C.
,
Han
,
K.
,
Wang
,
C.
,
Sun
,
S.
,
Li
,
P.
, and
Hu
,
J.
,
2024
, “
Experimental/Numerical Investigation on the Hydrodynamic and Noise Characteristics of Pump-Jet Propulsion
,”
Ocean Eng.
,
307
(
May
), p.
117995
.10.1016/j.oceaneng.2024.117995
2.
Spence, J. H., and Yin, C., 2024, “A Call to Action to Reduce Underwater Radiated Noise while Reducing Greenhouse Gas Emissions,”
SNAME Maritime Convention
, Norfolk, VA, Oct.
14
16
.10.5957/SMC-2024-046
3.
Primo
,
D. D. A. S.
,
Barreto
,
C. P.
, and
Alverne
,
T. C. F. M.
,
2018
, “
Direito Internacional E Poluição Sonora Marinha: Efeitos Jurídicos Do Reconhecimento Do Som Como Fonte De Poluição Dos Oceanos
,”
Veredas Direito: Direito Amb. Des. Sust.
,
15
(
32
), pp.
277
295
.10.18623/rvd.v15i32.1194
4.
Rudd
,
A. B.
,
Richlen
,
M. F.
, and
Stimpert
,
A. K.
,
2015
, “
Radiated Sound of a High-Speed Water-Jet-Propelled Transportation Vessel
,”
Advances in Experimental Medicine and Biology
,
Springer
, New York, pp.
951
956
.10.1007/978-1-4939-2981-8_117
5.
Ya
,
L.
,
Nan
,
Z.
,
Ziying
,
X.
, and
Hongxing
,
S.
,
2017
, “
Review of Numerical Simulation of Propeller Noise Based on LES Combining Three Acoustic Prediction Methods
,”
Technical Acoustics
, 36(5), pp. 461--466.https://link.oversea.cnki.net/doi/10.16300/j.cnki.1000-3630.2017.05.011
6.
Sun
,
Y.
,
Wu
,
T.
,
Su
,
Y.
, and
Peng
,
H.
,
2020
, “
Numerical Prediction On Vibration and Noise Reduction Effects of Propeller Boss Cap Fins on a Propulsion System
,”
Brodogradnja
,
71
(
4
), pp.
1
18
.10.21278/brod71401
7.
Christopher
,
S.
,
Yuan
,
S.
,
Pei
,
J.
,
Cheng
,
G. X.
, and
Yiyun
,
W.
,
2018
, “
Study of Flow Induced Noise in Vertical Inline Pump Using Lighthill Analogy
,” 3rd International Conference on Design, Analysis, Manufacturing and Simulation (
ICDAMS2018
), Chennai, India, Apr. 6–7, p.
01010
.10.1051/matecconf/201817201010
8.
Yang
,
Q.
,
Li
,
W.
,
Ji
,
L.
,
Shi
,
W.
,
Pu
,
W.
,
Long
,
Y.
, and
He
,
X.
,
2023
, “
Research on the Hydrodynamic Noise Characteristics of a Mixed-Flow Pump
,”
J. Mar. Sci. Eng.
,
11
(
12
), p.
2209
.10.3390/jmse11122209
9.
Sezen
,
S.
, and
Atlar
,
M.
,
2023
, “
Marine Propeller Underwater Radiated Noise Prediction With the FWH Acoustic Analogy Part 2: Assessment of Model Scale Propeller Hydroacoustic Performance Under Non-Uniform Flow Conditions
,”
Ocean Eng.
,
270
, p.
113443
.10.1016/j.oceaneng.2022.113443
10.
Han
,
W.
,
Chen
,
R.
,
Li
,
R.
,
Su
,
M.
,
Qiang
,
Y.
,
Han
,
J.
, and
Li
,
H.
,
2020
, “
Acoustic Characteristics of Water-Jet Propulsion With Screw Mixed-Flow Pump Under Quasi-Submerged State
,”
Mod. Phys. Lett. B
,
34
(
32
), p.
2050373
.10.1142/S021798492050373X
11.
Shi
,
S.
,
Tang
,
W.
,
Huang
,
X.
,
Dong
,
X.
, and
Hu
,
H.
,
2022
, “
Experimental and Numerical Investigations on the Flow-Induced Vibration and Acoustic Radiation of a Pump-Jet Propulsor Model in a Water Tunnel
,”
Ocean Eng.
,
258
, p.
111736
.10.1016/j.oceaneng.2022.111736
12.
Shabeeb
,
N. P.
, and
Sinha
,
A.
,
2024
, “
Jet Noise Prediction Using Turbulent Scales From LES and RANS
,”
Lecture Notes in Mechanical Engineering
, Springer Nature, New York, pp.
201
14
.
13.
Kimmerl
,
J.
,
Mertes
,
P.
, and
Abdel-Maksoud
,
M.
,
2021
, “
Application of Large Eddy Simulation to Predict Underwater Noise of Marine Propulsors. Part 2: Noise Generation
,”
J. Mar. Sci. Eng.
,
9
(
7
), p.
778
.10.3390/jmse9070778
14.
Li
,
L.
,
Ying
,
X.
, and
Rui
,
W.
,
2017
, “
Applicability of RANS, DES and LES in Propeller Flow Noise
,”
DOAJ
, 12(6), pp.
43
48
.10.3969/j.issn.1673-3185.2017.06.007
15.
Bensow
,
R.
, and
Liefvendahl
,
M.
,
2016
, “
An Acoustic Analogy and Scale-Resolving Flow Simulation Methodology for the Prediction of Propeller Radiated Noise
,”
31st Symposium on Naval Hydrodynamics
, Monterey, CA, Sept. 11--16, pp. 1--19.https://publications.lib.chalmers.se/records/fulltext/243762/local_243762.pdf
16.
Li
,
D.-Q.
,
Hallander
,
J.
, and
Johansson
,
T.
,
2018
, “
Predicting Underwater Radiated Noise of a Full Scale Ship With Model Testing and Numerical Methods
,”
Ocean Eng.
,
161
, pp.
121
135
.10.1016/j.oceaneng.2018.03.027
17.
Ianniello
,
S.
,
Muscari
,
R.
, and
Di Mascio
,
A.
,
2013
, “
Ship Underwater Noise Assessment by the Acoustic Analogy. Part I: Nonlinear Analysis of a Marine Propeller in a Uniform Flow
,”
J. Mar. Sci. Technol.
,
18
(
4
), pp.
547
570
.10.1007/s00773-013-0227-0
18.
Testa
,
C.
,
Porcacchia
,
F.
,
Zaghi
,
S.
, and
Gennaretti
,
M.
,
2021
, “
Study of a FWH-Based Permeable-Surface Formulation for Propeller Hydroacoustics
,”
Ocean Eng.
,
240
, p.
109828
.10.1016/j.oceaneng.2021.109828
19.
Testa
,
C.
,
Porcacchia
,
F.
,
Muscari
,
R.
, and
Greco
,
L.
,
2023
, “
Noise Field Properties of Marine Propellers in Open Water
,”
Ocean Eng.
,
288
, p.
116194
.10.1016/j.oceaneng.2023.116194
20.
Sarradj
,
E.
,
Fritzsche
,
C.
, and
Geyer
,
T.
,
2011
, “
Silent Owl Flight: Bird Flyover Noise Measurements
,”
AIAA J.
,
49
(
4
), pp.
769
779
.10.2514/1.J050703
21.
Rong
,
J.
, and
Liu
,
H.
,
2023
, “
Numerical Investigation of Three-Dimensional Aeroacoustic Characteristics of Owl-Inspired Trailing-Edge Fringes
,”
J. Bionic Eng.
,
20
(
3
), pp.
1103
1120
.10.1007/s42235-022-00311-z
22.
Wang
,
J.
,
Ishibashi
,
K.
,
Joto
,
M.
,
Ikeda
,
T.
,
Fujii
,
T.
,
Nakata
,
T.
, and
Liu
,
H.
,
2021
, “
Aeroacoustic Characteristics of Owl-Inspired Blade Designs in a Mixed Flow Fan: Effects of Leading- and Trailing-Edge Serrations
,”
Bioinspiration Biomimetics
,
16
(
6
), p.
066003
.10.1088/1748-3190/ac1309
23.
Wei
,
Y.
,
Xu
,
F.
,
Bian
,
S.
, and
Kong
,
D.
,
2020
, “
Noise Reduction of UAV Using Biomimetic Propellers With Varied Morphologies Leading-Edge Serration
,”
J. Bionic Eng.
,
17
(
4
), pp.
767
779
.10.1007/s42235-020-0054-z
24.
Rao
,
C.
,
Ikeda
,
T.
,
Nakata
,
T.
, and
Liu
,
H.
,
2017
, “
Owl-Inspired Leading-Edge Serrations Play a Crucial Role in Aerodynamic Force Production and Sound Suppression
,”
Bioinspiration Biomimetics
,
12
(
4
), p.
046008
.10.1088/1748-3190/aa7013
25.
Ito
,
S.
,
2009
, “
Aerodynamic Influence of Leading-Edge Serrations on an Airfoil in a Low Reynolds Number
,”
J. Biomech. Sci. Eng.
,
4
(
1
), pp.
117
123
.10.1299/jbse.4.117
26.
Sun
,
Y.
,
Liu
,
W.
, and
Li
,
T.-Y.
,
2019
, “
Numerical Investigation on Noise Reduction Mechanism of Serrated Trailing Edge Installed on a Pump-Jet Duct
,”
Ocean Eng.
,
191
, p.
106489
.10.1016/j.oceaneng.2019.106489
27.
Lee
,
H. M.
,
Lu
,
Z.
,
Lim
,
K. M.
,
Xie
,
J.
, and
Lee
,
H. P.
,
2019
, “
Quieter Propeller With Serrated Trailing Edge
,”
Appl. Acoust.
,
146
, pp.
227
236
.10.1016/j.apacoust.2018.11.020
28.
Avallone
,
F.
,
van der Velden
,
W. C. P.
, and
Ragni
,
D.
,
2017
, “
Benefits of Curved Serrations on Broadband Trailing-Edge Noise Reduction
,”
J. Sound Vib.
,
400
, pp.
167
177
.10.1016/j.jsv.2017.04.007
29.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid‐Scale Eddy Viscosity Model
,”
Phys. Fluids A Fluid Dyn.
,
3
(
7
), pp.
1760
1765
.10.1063/1.857955
30.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid‐Scale Closure Method
,”
Phys. Fluids A Fluid Dyn.
,
4
(
3
), pp.
633
635
.10.1063/1.858280
31.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow Turbul. Combust.
,
62
(
3
), pp.
183
200
.10.1023/A:1009995426001
32.
Luo
,
X.
,
Li
,
Q.
,
Zhang
,
Z.
, and
Zhang
,
J.
,
2021
, “
Research on the Underwater Noise Radiation of High Pressure Water Jet Propulsion
,”
Ocean Eng.
,
219
, p.
108438
.10.1016/j.oceaneng.2020.108438
33.
Arce León
,
C.
,
Merino-Martínez
,
R.
,
Ragni
,
D.
,
Avallone
,
F.
, and
Snellen
,
M.
,
2016
, “
Boundary Layer Characterization and Acoustic Measurements of Flow-Aligned Trailing Edge Serrations
,”
Exp. Fluids
,
57
(
12
), pp. 2558—2577.10.1007/s00348-016-2272-z
34.
Romani
,
G.
,
Casalino
,
D.
, and
van der Velden
,
W.
,
2021
, “
Numerical Analysis of Airfoil Trailing-Edge Noise for Straight and Serrated Edges at Incidence
,”
AIAA J.
,
59
(
7
), pp.
2558
2577
.10.2514/1.J059457
You do not currently have access to this content.