Abstract

Hydraulic excitation under flow instability threatens the operational safety of large vertical centrifugal pumps (LVCP), which are crucial in long-distance water transfer systems. This study uses delayed detached eddy simulation (DDES) to examine the unsteady excitation behavior of LVCP with two novel radial vaned diffuser designs, diffuser B and diffuser C. Diffuser B integrates large and small hydrofoil vanes, while diffuser C features a gradually varying hydrofoil layout. Simulation results reveal diffuser B postpones the head drop compared to diffuser A, while diffuser C exhibits the highest and most consistent head under part-load conditions. Diffuser C also reduces pressure pulsation intensity by up to 53.54% and low-frequency pulsations by 57.87%, especially at low flow rates. While diffuser B shows limited improvement in excitation forces, diffuser C not only markedly reduces the pulsation intensity of the excitation force but also mitigates the imbalance of radial excitation force in the circumferential direction, particularly under deep stall conditions with a maximum reduction of ΔFR to 80 N. Internal flow analysis indicates that the nonuniform pressure rise from the inlet to the outlet of diffuser A is the primary cause of pressure pulsation and excessive radial excitation force. The incremental hydrofoil vane assembly in diffuser C significantly reduces velocity variations across different blade spans and enhances the uniformity of pressure distribution. Additionally, diffuser C effectively suppresses large-scale vortex rotational propagation in the flow channel. These improvements collectively contribute to better control of unsteady hydraulic excitation in LVCP under unstable operating conditions.

References

1.
Ma
,
L.
, and
Wang
,
Q.
,
2024
, “
Do Water Transfer Projects Promote Water Use Efficiency? Case Study of South-to-North Water Transfer Project in Yellow River Basin of China
,”
Water
,
16
(
10
), p.
1367
.10.3390/w16101367
2.
Zhu
,
L.
,
Zhang
,
F.
,
Xu
,
Z.
,
Yuan
,
S.
,
Zulu
,
B.
, and
Hong
,
Q.
,
2024
, “
Study on Fish Damage Mechanism of the Large Flow Rate Centrifugal Pump in Hydraulic Engineering Pump Station
,”
Phys. Fluids
,
36
(
11
), p.
115135
.10.1063/5.0239824
3.
Yang
,
G.
,
Zhao
,
X.
,
Zhang
,
D.
,
Geng
,
L.
,
Yang
,
X.
, and
Gao
,
X.
,
2021
, “
Hydraulic Components' Matching Optimization Design and Entropy Production Analysis in a Large Vertical Centrifugal Pump
,”
J. Mech. Sci. Technol.
,
35
(
11
), pp.
5033
5048
.10.1007/s12206-021-1021-2
4.
Dai
,
C.
,
Zhang
,
Y.
,
Pan
,
Q.
,
Dong
,
L.
, and
Liu
,
H.
,
2021
, “
Study on Vibration Characteristics of Marine Centrifugal Pump Unit Excited by Different Excitation Sources
,”
J. Mar. Sci. Eng.
,
9
(
3
), p.
274
.10.3390/jmse9030274
5.
Lu
,
J.
,
Wang
,
Y.
,
Wang
,
B.
,
Zhou
,
Y.
,
Liu
,
X.
, and
Si
,
Q.
,
2025
, “
Study on the Vibration Characteristics Induced by Rotating Stall in a Centrifugal Pump Based on Improved Variational Mode Decomposition
,”
Flow Meas. Instrum.
,
102
, p.
102761
.10.1016/j.flowmeasinst.2024.102761
6.
Zhou
,
P-J.
,
Dai
,
J-C.
,
Li
,
Y-F.
,
Chen
,
T.
, and
Mou
,
J-G.
,
2018
, “
Unsteady Flow Structures in Centrifugal Pump Under Two Types of Stall Conditions
,”
J. Hydrodyn.
,
30
(
6
), pp.
1038
1044
.10.1007/s42241-018-0125-3
7.
Tang
,
Y.
,
Wang
,
F.
,
Wang
,
C.
,
Ye
,
C.
,
Qu
,
Q.
, and
Xu
,
J.
,
2024
, “
Investigation on the Influence of Seal Clearance Leakage on the Rotating Stall Characteristics for a Centrifugal Pump
,”
Phys. Fluids
,
36
(
2
), p.
025176
.10.1063/5.0197065
8.
Fu
,
X.
,
Li
,
D.
,
Lv
,
J.
,
Yang
,
B.
,
Wang
,
H.
, and
Wei
,
X.
,
2024
, “
High-Amplitude Pressure Pulsations Induced by Complex Inter-Blade Flow During Load Rejection of Ultrahigh-Head Prototype Pump Turbines
,”
Phys. Fluids
,
36
(
3
), p.
034115
.10.1063/5.0191495
9.
Wang
,
W.
,
Liu
,
S.
,
Pei
,
J.
,
Sun
,
J.
, and
Sun
,
Q.
,
2024
, “
Efficiency Improvement and Pressure Pulsation Reduction of Volute Centrifugal Pump Through Diffuser Design Optimization
,”
J. Energy Storage
,
102
, p.
114184
.10.1016/j.est.2024.114184
10.
Zhao
,
X.
,
Xiao
,
Y.
,
Wang
,
Z.
,
Luo
,
Y.
, and
Cao
,
L.
,
2018
, “
Unsteady Flow and Pressure Pulsation Characteristics Analysis of Rotating Stall in Centrifugal Pumps Under Off-Design Conditions
,”
ASME J. Fluids Eng.
,
140
(
2
), p.
021105
.10.1115/1.4037973
11.
Mao
,
Y-H.
,
Liu
,
H-L.
,
Wang
,
Y.
,
Chen
,
J.
, and
Liu
,
F.
,
2023
, “
Experimental Study on Effects of Air Injection on Cavitation Pressure Pulsation and Vibration in a Centrifugal Pump With Inducer
,”
J. Hydrodyn.
,
35
(
6
), pp.
1168
1178
.10.1007/s42241-024-0086-7
12.
Chen
,
M. D.
, and
Tan
,
L.
,
2024
, “
Role of Particle Motion on Pressure Fluctuation and Erosion for a Centrifugal Pump in Energy Storage Pump Station
,”
J. Energy Storage
,
99
, p.
113252
.10.1016/j.est.2024.113252
13.
Backman
,
G.
,
2008
,
CFD Validation of Pressure Fluctuations in a Pump Turbine
,
Lulea University of Technology
,
Lulea, Sweden
.
14.
Du
,
L.
,
Zheng
,
F.
,
Gao
,
B.
,
Gad
,
M.
,
Li
,
D.
, and
Zhang
,
N.
,
2024
, “
Numerical Investigation of Rotor and Stator Matching Mode on the Complex Flow Field and Pressure Pulsation of a Vaned Centrifugal Pump
,”
Energies
,
17
(
10
), p.
2416
.10.3390/en17102416
15.
Cernetic
,
J.
,
2009
, “
The Use of Noise and Vibration Signals for Detecting Cavitation in Kinetic Pumps
,”
Part C J. Mech. Eng. Sci.
,
223
(
7
), pp.
1645
1655
.10.1243/09544062JMES1404
16.
Khalifa
,
A. E.
,
Al-Qutub
,
A. M.
, and
Ben-Mansour
,
R.
,
2011
, “
Study of Pressure Fluctuations and Induced Vibration at Blade-Passing Frequencies of a Double Volute Pump
,”
Arabian J. Sci. Eng.
,
36
(
7
), pp.
1333
1345
.10.1007/s13369-011-0119-8
17.
Yuan
,
Y.
,
Yuan
,
S. Q.
, and
Tang
,
L. D.
,
2019
, “
Numerical Investigation on the Mechanism of Double-Volute Balancing Radial Hydraulic Force on the Centrifugal Pump
,”
Processes
,
7
(
10
), p.
689
.10.3390/pr7100689
18.
Qian
,
C.
,
Yang
,
L. H.
,
Qi
,
Z. P.
et al.,
2022
, “
Analysis of the Axial Force Distribution Characteristics of Multistage Pumps and Its Correlation With Hydraulic Property
,”
Adv. Mech. Eng.
,
14
(
10
), pp.
1
15
.10.1177/16878132221130565
19.
Yan
,
S.
,
Kan
,
Y.
,
Li
,
X.
,
Xiao
,
L.
, and
Ye
,
Z.
,
2024
, “
Numerical Calculation and Experimental Study of the Axial Force of Aero Fuel Centrifugal Pumps
,”
Appl. Sci.-Basel
,
14
(
10
), p.
4313
.10.3390/app14104313
20.
Tan
,
L.
,
Yang
,
Y.
,
Shi
,
W.
,
Chen
,
C.
, and
Xie
,
Z.
,
2021
, “
Influence of Blade Wrap Angle on the Hydrodynamic Radial Force of Single Blade Centrifugal Pump
,”
Appl. Sci.-Basel
,
11
(
19
), p.
9052
.10.3390/app11199052
21.
Benra
,
F. K.
,
2006
, “
Numerical and Experimental Investigation on the Flow Induced Oscillations of a Single-Blade Pump Impeller
,”
ASME J. Fluids Eng.
,
128
(
4
), pp.
783
793
.10.1115/1.2201629
22.
Li
,
J-W.
,
Zhang
,
Y-N.
,
Liu
,
K-H.
,
Xian
,
H-Z.
, and
Yu
,
J-X.
,
2017
, “
Numerical Simulation of Hydraulic Force on the Impeller of Reversible Pump Turbines in Generating Mode
,”
J. Hydrodyn.
,
29
(
4
), pp.
603
609
.10.1016/S1001-6058(16)60773-4
23.
Olimstad
,
G.
,
Nielsen
,
T.
, and
Borresen
,
B.
,
2012
, “
Dependency on Runner Geometry for Reversible-Pump Turbine Characteristics in Turbine Mode of Operation
,”
ASME J. Fluids Eng.
,
134
(
12
), p.
121102
.10.1115/1.4007897
24.
Gao
,
B.
,
Zhang
,
N.
,
Li
,
Z.
,
Ni
,
D.
, and
Yang
,
M.
,
2016
, “
Influence of the Blade Trailing Edge Profile on the Performance and Unsteady Pressure Pulsations in a Low Specific Speed Centrifugal Pump
,”
ASME J. Fluids Eng.
,
138
(
5
), p.
051106
.10.1115/1.4031911
25.
Zhang
,
N.
,
Liu
,
X.
,
Gao
,
B.
,
Wang
,
X.
, and
Xia
,
B.
,
2019
, “
Effects of Modifying the Blade Trailing Edge Profile on Unsteady Pressure Pulsations and Flow Structures in a Centrifugal Pump
,”
Int. J. Heat Fluid Flow
,
75
, pp.
227
238
.10.1016/j.ijheatfluidflow.2019.01.009
26.
Ding
,
H.
,
Lin
,
F.
,
Chang
,
T.
, and
Ge
,
F.
,
2024
, “
Numerical Study on the Effect of Blade Trailing Edge Filing on Performance and Unsteady Pressure Pulsation in Low Specific Speed Centrifugal Pump
,”
J. Vib. Eng. Technol.
,
12
(
1
), pp.
233
245
.10.1007/s42417-022-00840-1
27.
Wu
,
C.
,
Zhang
,
W.
,
Wu
,
P.
,
Yi
,
J.
,
Ye
,
H.
,
Huang
,
B.
, and
Wu
,
D.
,
2021
, “
Effects of Blade Pressure Side Modification on Unsteady Pressure Pulsation and Flow Structures in a Centrifugal Pump
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111208
.10.1115/1.4051404
28.
Wu
,
C.
,
Li
,
Q.
,
Zheng
,
F.
,
Wu
,
P.
,
Yang
,
S.
,
Ye
,
H.
,
Huang
,
B.
, and
Wu
,
D.
,
2021
, “
Improve of Unsteady Pressure Pulsation Based on Jet-Wake Suppression for a Low Specific Centrifugal Pump
,”
ASME J. Fluids Eng.
,
143
(
11
), p.
111202
.10.1115/1.4051402
29.
Li
,
D.
,
Qin
,
Y.
,
Wang
,
J.
,
Zhu
,
Y.
,
Wang
,
H.
, and
Wei
,
X.
,
2022
, “
Optimization of Blade High-Pressure Edge to Reduce Pressure Fluctuations in Pump-Turbine Hump Region
,”
Renewable Energy
,
181
, pp.
24
38
.10.1016/j.renene.2021.09.013
30.
Zhu
,
D.
,
Xiao
,
R.
,
Yao
,
Z.
,
Yang
,
W.
, and
Liu
,
W.
,
2020
, “
Optimization Design for Reducing the Axial Force of a Vaned Mixed-Flow Pump
,”
Eng. Appl. Comput. Fluid Mech.
,
14
(
1
), pp.
882
896
.10.1080/19942060.2020.1749933
31.
Luo
,
X.
,
Xie
,
H.
,
Feng
,
J.
,
Ge
,
Z.
, and
Zhu
,
G.
,
2022
, “
Influence of the Balance Hole on the Performance of a Gas-Liquid Two-Phase Centrifugal Pump
,”
Ocean Eng.
,
244
, p.
110316
.10.1016/j.oceaneng.2021.110316
32.
Yang
,
G.
,
Zhang
,
D.
,
Shen
,
X.
,
Pan
,
Q.
,
Pang
,
Q.
, and
Lu
,
Q.
,
2024
, “
Investigation on Flow Instability in the Hump Region of the Large Vertical Centrifugal Pump Under Cavitation Conditions Based on Proper Orthogonal Decomposition
,”
Phys. Fluids
,
36
(
11
), p.
115134
.10.1063/5.0236649
33.
Yang
,
G.
,
Shen
,
X.
,
Pan
,
Q.
,
Geng
,
L.
,
Shi
,
L.
,
Xu
,
B.
, and
Zhang
,
D.
,
2024
, “
Investigation on Passive Suppression Method of Hump Characteristics in a Large Vertical Volute Centrifugal Pump: Using Combined Diffuser Vane Structure
,”
Energy
,
304
, p.
132067
.10.1016/j.energy.2024.132067
34.
Tang
,
L.
,
Yuan
,
S.
,
Tang
,
Y.
, and
Yan
,
H.
,
2018
, “
Performance Experiment and Numerical Prediction on the Optimization Design of the Micro-Sized Water Turbine for the Hose Reel Irrigator
,”
Int. J. Agric. Biol. Eng.
,
11
(
5
), pp.
108
115
.10.25165/j.ijabe.20181105.2876
35.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), pp.
181
195
.10.1007/s00162-006-0015-0
36.
Ren
,
Y.
,
Zhu
,
Z.
,
Wu
,
D.
,
Li
,
X.
, and
Jiang
,
L.
,
2019
, “
Investigation of Flow Separation in a Centrifugal Pump Impeller Based on Improved Delayed Detached Eddy Simulation Method
,”
Adv. Mech. Eng.
,
11
(
12
), pp.
1
13
.10.1177/1687814019897832
37.
Xi
,
S.
,
Desheng
,
Z.
,
Bin
,
X.
,
Weidong
,
S.
, and
(Bart) van Esch
,
B. P. M.
,
2021
, “
Experimental and Numerical Investigation on the Effect of Tip Leakage Vortex Induced Cavitating Flow on Pressure Fluctuation in an Axial Flow Pump
,”
Renewable Energy
,
163
, pp.
1195
1209
.10.1016/j.renene.2020.09.004
38.
Gong
,
J.
,
Luo
,
W-Z.
,
Wu
,
T-C.
, and
Zhang
,
Z-Y.
,
2022
, “
Numerical Analysis of Vortex and Cavitation Dynamics of an Axial-Flow Pump
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
1921
1938
.10.1080/19942060.2022.2122570
39.
Pendar
,
M. R.
, and
Roohi
,
E.
,
2018
, “
Cavitation Characteristics Around a Sphere: An LES Investigation
,”
Int. J. Multiphase Flow
,
98
, pp.
1
23
.10.1016/j.ijmultiphaseflow.2017.08.013
40.
El-Emam
,
M. A.
,
Zhou
,
L.
, and
Omara
,
A. I.
,
2023
, “
Predicting the Performance of Aero-Type Cyclone Separators With Different Spiral Inlets Under Macroscopic Bio-Granular Flow Using CFD-DEM Modelling
,”
Biosystems Eng.
,
233
, pp.
125
150
.10.1016/j.biosystemseng.2023.08.003
41.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and Freitas, C. J.,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
42.
Pendar
,
M. R.
, and
Oshkai
,
P.
,
2025
, “
High-Fidelity Modeling of Cavitating Flow Around a Marine Propeller With Bio-Inspired Wavy Rudder Configurations: Radiated Noise Analysis Using Hydro-Acoustic Analogies
,”
Phys. Fluids
,
37
(
3
), p.
033375
.10.1063/5.0257316
43.
Coleman
,
H. W.
,
Steck
,
W. G.
Jr.
, and
Hurlbut
,
F. C.
,
1991
, “
Experimentation and Uncertainty Analysis for Engineers
,”
ASME J. Eng. Ind.
,
113
(
2
), pp.
248
248
.10.1115/1.2899692
44.
ASME, 2019, “PTC 19.1-2019:
Test Uncertainty
,”
American Society of Mechanical Engineers
, New York.
45.
Ye
,
C.
,
Tang
,
Y.
,
An
,
D.
,
Wang
,
F.
,
Zheng
,
Y.
, and
van Esch
,
B. P. M.
,
2023
, “
Investigation on Stall Characteristics of Marine Centrifugal Pump Considering Transition Effect
,”
Ocean Eng.
,
280
, p.
114823
.10.1016/j.oceaneng.2023.114823
46.
Yuan
,
Z.
,
Zhang
,
Y.
,
Wang
,
C.
, and
Lu
,
B.
,
2021
, “
Study on Characteristics of Vortex Structures and Irreversible Losses in the Centrifugal Pump
,”
Part A J. Power Energy
,
235
(
5
), pp.
1080
1093
.10.1177/0957650920983061
47.
Pendar
,
M. R.
,
McIntyre
,
D.
, and
Oshkai
,
P.
,
2024
, “
Hydroacoustic Analysis of a Full-Scale Marine Vessel: Prediction of the Cavitation-Induced Underwater Radiated Noise Using Large Eddy Simulations
,”
Phys. Fluids
,
36
(
7
), p.
073331
.10.1063/5.0220691
48.
Zhou
,
P. J.
,
Wang
,
F. J.
, and
Mou
,
J. G.
,
2017
, “
Investigation of Rotating Stall Characteristics in a Centrifugal Pump Impeller at Low Flow Rates
,”
Eng. Comput.
,
34
(
6
), pp.
1989
2000
.10.1108/EC-05-2016-0167
49.
Yang
,
G.
,
Zhang
,
D.
,
Yang
,
X.
,
Xu
,
B.
,
Zhao
,
X.
, and
van Esch
,
B. P. M.
,
2022
, “
Study on the Flow Pattern and Pressure Fluctuation in a Vertical Volute Centrifugal Pump With Vaned Diffuser Under Near Stall Conditions
,”
J. Braz. Soc. Mech. Sci. Eng.
,
44
(
4
), p.
118
.10.1007/s40430-022-03411-3
You do not currently have access to this content.