Abstract

This study aims to improve the performance of centrifugal fans employed in totally enclosed fan-cooled (TEFC) motors by introducing leading-edge serrations, mimicking the leading-edge comb on owl wings, and suction-side ridges, imitating the soft down coat on the owl wing surface. A numerical wind tunnel is established according to the experimental standards of the Air Movement and Control Association (AMCA) 210. The reliability and accuracy of the simulation are first verified through an observed agreement between the simulation results and experimental measurements of the original fan. The influences and optimal values of four geometric dimensions related to the bionic structures, namely, the serration height, serration width, ridge height, and ridge spacing, are studied next in use of the Taguchi method and analysis of variance (ANOVA) at low, medium, and high flow rates. The investigation shows that the optimal bionic fan can effectively reduce the overall turbulent kinetic energy and produces a stronger, more uniform flow field behind the fan, thereby enhancing the fan's aerodynamic performance.

References

1.
Dong
,
X.
, and
Dou
,
H. S.
,
2021
, “
Effects of Bionic Volute Tongue Bioinspired by Leading Edge of Owl Wing and Its Installation Angle on Performance of Multi-Blade Centrifugal Fan
,”
J. Appl. Fluid Mech.
,
14
(
4
), pp.
1031
1043
.10.47176/jafm.14.04.31987
2.
Lin
,
S.-C.
, and
Tsai
,
M.-L.
,
2012
, “
An Integrated Performance Analysis for a Backward-Inclined Centrifugal Fan
,”
Comput. Fluids
,
56
, pp.
24
38
.10.1016/j.compfluid.2011.11.009
3.
Alemi
,
H.
,
Ahmad Nourbakhsh
,
S.
,
Raisee
,
M.
, and
Farhad
,
Najafi
, and
A.
,
2015
, “
Development of New ‘Multivolute Casing’ Geometries for Radial Force Reductionin Centrifugal Pumps
,”
Eng. Appl. Comput. Fluid Mech.
,
9
(
1
), pp.
1
11
.10.1080/19942060.2015.1004787
4.
Dou
,
H.-S.
,
Wu
,
L.
,
Wei
,
Y.
,
Chen
,
Y.
,
Cao
,
W.
, and
Ying
,
C.
,
2017
, “
Employing Rotating Vaneless Diffuser to Enhance the Performance of Plenum Fan
,”
Int. J. Fluid Mach. Syst.
,
10
(
1
), pp.
9
18
.10.5293/IJFMS.2017.10.1.009
5.
Amjadimanesh
,
A.
,
Ajam
,
H.
, and
Nezhad
,
A. H.
,
2015
, “
Numerical Study of Blade Number Effect on the Performance of a 3D FC Centrifugal Fan
,”
Int. J. Mechatron., Electr. Comput. Technol.
,
5
(
15
), pp.
2109
2119
.https://www.aeuso.org/includes/files/articles/Vol5_Iss15_2109-2119_Numerical_Study_of_Blade_Number_Eff.pdf
6.
Singh
,
O. P.
,
Khilwani
,
R.
,
Sreenivasulu
,
T.
, and
Kannan
,
M.
,
2011
, “
Parametric Study of Centrifugal Fan Performance: Experiments and Numerical Simulation
,”
Int. J. Adv. Eng. Technol.
,
1
(
2
), pp.
33
50
.https://www.researchgate.net/profile/Rakesh-Khilwani-2/publication/267971543_PARAMETRIC_STUDY_OF_CENTRIFUGAL_FAN_PERFORMANCE_EXPERIMENTS_AND_NUMERICAL_SIMULATION/links/570c36e808ae2eb94223beaa/PARAMETRIC-STUDY-OF-CENTRIFUGAL-FAN-PERFORMANCE-EXPERIMENTS-AND-NUMERICAL-SIMULATION.pdf
7.
Lin
,
S.-C.
, and
Huang
,
C.-L.
,
2002
, “
An Integrated Experimental and Numerical Study of Forward–Curved Centrifugal Fan
,”
Exp. Therm. Fluid Sci.
,
26
(
5
), pp.
421
434
.10.1016/S0894-1777(02)00112-7
8.
Ding
,
H.
,
Chang
,
T.
, and
Lin
,
F.
,
2020
, “
The Influence of the Blade Outlet Angle on the Flow Field and Pressure Pulsation in a Centrifugal Fan
,”
Processes
,
8
(
11
), p.
1422
.10.3390/pr8111422
9.
Shao
,
W.
,
Feng
,
J.
,
Zhang
,
F.
,
Wang
,
S.
,
Li
,
Y.
, and
Lv
,
J.
,
2023
, “
Aerodynamic Performance Optimization of Centrifugal Fan Blade for Air System of Self-Propelled Cotton-Picking Machine
,”
Agriculture
,
13
(
8
), p.
1579
.10.3390/agriculture13081579
10.
Dundi
,
T. M. K.
,
Sitaram
,
N.
, and
Suresh
,
M.
,
2012
, “
Application of Gurney Flaps on a Centrifugal Fan Impeller
,”
Int. J. Fluid Mach. Syst.
,
5
(
2
), pp.
65
71
.10.5293/IJFMS.2012.5.2.065
11.
Kumon
,
Y.
, and
Ohtsuka
,
M.
,
2013
, “
Development of Electric Fan Propeller Featuring Chestnut Tiger Butterfly Wing Characteristics
,”
J. Aero Aqua Bio-Mech.
,
3
(
1
), pp.
103
108
.10.5226/jabmech.3.103
12.
Wang
,
J.
,
Liu
,
X.
,
Tian
,
C.
, and
Xi
,
G.
,
2023
, “
Aerodynamic Performance Improvement and Noise Control for the Multi-Blade Centrifugal Fan by Using Bio-Inspired Blades
,”
Energy
,
263
, p.
125829
.10.1016/j.energy.2022.125829
13.
Huang
,
S.
,
Hu
,
Y.
, and
Wang
,
Y.
,
2021
, “
Research on Aerodynamic Performance of a Novel Dolphin Head-Shaped Bionic Airfoil
,”
Energy
,
214
, p.
118179
.10.1016/j.energy.2020.118179
14.
Tian
,
W.
,
Liu
,
F. Y.
,
Cong
,
Q.
,
Liu
,
Y.
, and
Ren
,
L.
,
2013
, “
Study on Aerodynamic Performance of the Bionic Airfoil Based on the Swallow's Wing
,”
J. Mech. Med. Biol.
,
13
(
6
), p.
1340022
.10.1142/S0219519413400228
15.
Pedro
,
H. C.
, and
Kobayashi
,
M.
,
2008
, “
Numerical Study of Stall Delay on Humpback Whale Flippers
,”
AIAA
Paper No. 2008-584.10.2514/6.2008-584
16.
Lin
,
Y.
,
Li
,
X.
,
Zhu
,
Z.
,
Wang
,
X.
,
Lin
,
T.
, and
Cao
,
H.
,
2022
, “
An Energy Consumption Improvement Method for Centrifugal Pump Based on Bionic Optimization of Blade Trailing Edge
,”
Energy
,
246
, p.
123323
.10.1016/j.energy.2022.123323
17.
Xiong
,
Y.
, and
Kong
,
D.
,
2021
, “
Experimental Study on the Aerodynamic Performance of the Bionic Rotor Blades With Non-Smooth Surface
,” IEEE International Conference on Artificial Intelligence and Industrial Design (
AIID
), Guangzhou, China, May 28–30, pp.
421
427
.10.1109/AIID51893.2021.9456516
18.
Domel
,
A. G.
,
Saadat
,
M.
,
Weaver
,
J. C.
,
Haj-Hariri
,
H.
,
Bertoldi
,
K.
, and
Lauder
,
G. V.
,
2018
, “
Shark Skin-Inspired Designs That Improve Aerodynamic Performance
,”
J. R. Soc. Interface
,
15
(
139
), p.
20170828
.10.1098/rsif.2017.0828
19.
Mascha
,
E.
,
1904
, “
Uber die Schwungfedern
,”
Z. Wiss. Zool.
,
77
, pp.
606
651
.https://www.zobodat.at/pdf/Zeitschrift-fuer-wiss-Zoologie_77_0606-0651.pdf
20.
Graham
,
R. R.
,
1934
, “
The Silent Flight of Owls
,”
J. R. Aeronaut. Soc.
,
38
(
286
), pp.
837
843
.10.1017/S0368393100109915
21.
Wang
,
J.
,
Ishibashi
,
K.
,
Joto
,
M.
,
Ikeda
,
T.
,
Fujii
,
T.
,
Nakata
,
T.
, and
Liu
,
H.
,
2021
, “
Aeroacoustic Characteristics of Owl-Inspired Blade Designs in a Mixed Flow Fan: Effects of Leading- and Trailing-Edge Serrations
,”
Bioinspiration Biomimetics
,
16
(
6
), p.
066003
.10.1088/1748-3190/ac1309
22.
Wang
,
J.
,
Nakata
,
T.
, and
Liu
,
H.
,
2019
, “
Development of Mixed Flow Fans With Bio-Inspired Grooves
,”
Biomimetics
,
4
(
4
), p.
72
.10.3390/biomimetics4040072
23.
Chen
,
K.
,
Liu
,
Q.-P.
, and
Sun
,
W.-L.
,
2018
, “
Experiment Research on the Efficiency of Bionic Blade of Axial Fan
,” IEEE International Conference on Mechatronics and Automation (
ICMA
), Changchun, China, Aug. 5–8, pp.
94
98
.10.1109/ICMA.2018.8484639
24.
Wang
,
J.
,
Zhang
,
C.
,
Wu
,
Z.
,
Wharton
,
J.
, and
Ren
,
L.
,
2017
, “
Numerical Study on Reduction of Aerodynamic Noise Around an Airfoil With Biomimetic Structures
,”
J. Sound Vib.
,
394
, pp.
46
58
.10.1016/j.jsv.2016.11.021
25.
Zhou
,
W.
,
Zhou
,
P.
,
Xiang
,
C.
,
Wang
,
Y.
,
Mou
,
J.
, and
Cui
,
J.
,
2023
, “
A Review of Bionic Structures in Control of Aerodynamic Noise of Centrifugal Fans
,”
Energies
,
16
(
11
), p.
4331
.10.3390/en16114331
26.
Nataraj
,
M.
, and
Arunachalam
,
V. P.
,
2006
, “
Optimizing Impeller Geometry for Performance Enhancement of a Centrifugal Pump Using the Taguchi Quality Concept
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
220
, pp.
765
782
.10.1243/09576509JPE184
27.
Chen
,
S.
,
Wang
,
D.
, and
Sun
,
S.
,
2011
, “
Bionic Fan Optimization Based on Taguchi Method
,”
Eng. Appl. Comput. Fluid Mech.
,
5
(
3
), pp.
302
314
.10.1080/19942060.2011.11015373
28.
Wang
,
S.
,
Yu
,
X.
,
Shen
,
L.
,
Yang
,
A.
,
Chen
,
E.
,
Fieldhouse
,
J.
,
Barton
,
D.
, and
Kosarieh
,
S.
,
2021
, “
Noise Reduction of Automobile Cooling Fan Based on Bio-Inspired Design
,”
Proc. Inst. Mech. Eng.
,
235
, pp.
465
478
.10.1177/0954407020959892
29.
Sun
,
Y.
,
Li
,
R.
,
Wang
,
L.
,
Liu
,
C.
,
Yang
,
Z.
, and
Ma
,
F.
,
2024
, “
Bionic Noise Reduction Design of Axial Fan Impeller
,”
J. Phys. D: Appl. Phys.
,
57
(
34
), p.
345501
.10.1088/1361-6463/ad5024
30.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.10.1016/0045-7930(94)00032-T
31.
Kim
,
S.-E.
,
Choudhury
,
D.
, and
Patel
,
B.
,
1999
, “
Computations of Complex Turbulent Flows Using the Commercial Code ANSYS FLUENT
,”
ICASE/LaRC Interdisciplinary Series in Science and Engineering
, Springer, Dordrecht, The Netherlands, pp.
259
276
.10.1007/978-94-011-4724-8_15
32.
Air Movement and Control Association International, Inc.
,
2016
, “
Laboratory Methods of Testing Fans for Certified Aerodynamic Performance Rating
,”
Air Movement and Control Association International
, Atlanta, GA, Standard Nos. ANSI/AMCA210-16 and ANSI/ASHRAE51-16.
33.
ANSYS, Inc.
,
2021
,
ANSYS FLUENT 12.0 User's Guide
,
ANSYS
, Canonsburg, PA.
34.
Kroeger
,
R. A.
,
Grushka
,
H. D.
, and
Helvey
,
T. C.
,
1972
, “
Low Speed Aerodynamics for Ultra-Quiet Flight
,”
Air Force Flight Dynamics Laboratory, Air Force Systems Command, United States Air Force
, TULLAHOMA, TN, Report No.
AFFDL-TR-71-75
.https://apps.dtic.mil/sti/pdfs/AD0893426.pdf
35.
Sarradj
,
E.
,
Fritzsche
,
C.
, and
Geyer
,
T.
,
2011
, “
Silent Owl Flight: Bird Flyover Noise Measurements
,”
AIAA J.
,
49
(
4
), pp.
769
779
.10.2514/1.J050703
36.
Wolf
,
T.
, and
Konrath
,
R.
,
2015
, “
Avian Wing Geometry and Kinematics of a Free-Flying Barn Owl in Flapping Flight
,”
Exp. Fluids
,
56
(
2
), p.
28
.10.1007/s00348-015-1898-6
37.
Lee
,
H. H.
,
2011
,
Taguchi Methods: Principles and Practices of Quality Design
, 4th ed.,
Gau-Lih Book
, Tainan, Taiwan.
38.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows
,”
Proceedings of the Summer Program Center Turbulence Research
, Stanford, CA, June 27–July 22, pp.
193
207
.https://web.stanford.edu/group/ctr/Summer/SP1988/19_HUNT.pdf
You do not currently have access to this content.