Abstract

This study investigates the impact of Reynolds-averaged Navier–Stokes (RANS) turbulence models on the accurate computational simulation of the aerodynamic performance of the Savonius wind turbine. Five different models, including the Spalart–Allmaras (SA), realizable k–ε (RKE), shear stress transport (SST) k–ω, generalized k–ω (GEKO), and transition SST (TSST) models, are considered. The insight analysis utilizes high-fidelity two-dimensional (2D) incompressible unsteady RANS simulations for the two-blade turbine type with two configurations, TB1 and TB2, under various working conditions. The evaluation is based on quantitatively comparing the numerical aerodynamic parameters with the available experimental data and a deep analysis of the flow mechanism-induced turbine. The numerical results, through the comparison with an inviscid simulation, indicate a high sensitivity of the computed torque and power coefficients to the viscous model. All turbulence models fail to accurately predict the turbine's aerodynamic parameters at low speeds, where the tip speed ratio (TSR) is below 0.4. The SA and k–ω based turbulence models are effective in reproducing turbine performance in the optimal regime, where the TSR ranges from approximately 0.5 to 0.8. Additionally, the RKE model provides satisfactory predictions compared to experimental data, extending its accuracy to the high-speed regime across all tested configurations. Finally, the RKE model is the recommended turbulence model for computational fluid dynamics (CFD) simulations of Savonius wind turbines.

References

1.
Ritchie
,
H.
,
Roser
,
M.
, and
Rosado
,
P.
,
2020
, “
Renewable Energy
,” Our World in Data, Oxford, UK.
2.
Cao
,
L.
,
Ge
,
M.
,
Gao
,
X.
,
Du
,
B.
,
Li
,
B.
,
Huang
,
Z.
, and
Liu
,
Y.
,
2022
, “
Wind Farm Layout Optimization to Minimize the Wake Induced Turbulence Effect on Wind Turbines
,”
Appl. Energy
,
323
, p.
119599
.10.1016/j.apenergy.2022.119599
3.
Liang
,
Z.
, and
Liu
,
H.
,
2023
, “
Layout Optimization of an Offshore Floating Wind Farm Deployed With Novel Multi-Turbine Platforms With the Self-Adaptive Property
,”
Ocean Eng.
,
283
, p.
115098
.10.1016/j.oceaneng.2023.115098
4.
Dilimulati
,
A.
,
Stathopoulos
,
T.
, and
Paraschivoiu
,
M.
,
2018
, “
Wind Turbine Designs for Urban Applications: A Case Study of Shrouded Diffuser Casing for Turbines
,”
J. Wind Eng. Ind. Aerodyn.
,
175
, pp.
179
192
.10.1016/j.jweia.2018.01.003
5.
Bethi
,
R. V.
,
Laws
,
P.
,
Kumar
,
P.
, and
Mitra
,
S.
,
2019
, “
Modified Savonius Wind Turbine for Harvesting Wind Energy From Trains Moving in Tunnels
,”
Renewable Energy
,
135
, pp.
1056
1063
.10.1016/j.renene.2018.12.010
6.
Khan
,
M. J.
,
Bhuyan
,
G.
,
Iqbal
,
M. T.
, and
Quaicoe
,
J. E.
,
2009
, “
Hydrokinetic Energy Conversion Systems and Assessment of Horizontal and Vertical Axis Turbines for River and Tidal Applications: A Technology Status Review
,”
Appl. Energy
,
86
(
10
), pp.
1823
1835
.10.1016/j.apenergy.2009.02.017
7.
Elbatran
,
A. H.
,
Ahmed
,
Y. M.
, and
Shehata
,
A. S.
,
2017
, “
Performance Study of Ducted Nozzle Savonius Water Turbine, Comparison With Conventional Savonius Turbine
,”
Energy
,
134
, pp.
566
584
.10.1016/j.energy.2017.06.041
8.
Pan
,
P.
,
Sun
,
Y.
,
Yuan
,
C.
,
Yan
,
X.
, and
Tang
,
X.
,
2021
, “
Research Progress on Ship Power Systems Integrated With New Energy Sources: A Review
,”
Renewable Sustainable Energy Rev.
,
144
, p.
111048
.10.1016/j.rser.2021.111048
9.
Ghigo
,
A.
,
Faraggiana
,
E.
,
Giorgi
,
G.
,
Mattiazzo
,
G.
, and
Bracco
,
G.
,
2024
, “
Floating Vertical Axis Wind Turbines for Offshore Applications Among Potentialities and Challenges: A Review
,”
Renewable Sustainable Energy Rev.
,
193
, p.
114302
.10.1016/j.rser.2024.114302
10.
Savonius
,
S. J.
,
1931
, “
The S-Rotor and Its Applications
,”
Mech. Eng.
,
53
(
5
), pp.
333
338
.
11.
Wong
,
K. H.
,
Chong
,
W. T.
,
Sukiman
,
N. L.
,
Poh
,
S. C.
,
Shiah
,
Y.-C.
, and
Wang
,
C.-T.
,
2017
, “
Performance Enhancements on Vertical Axis Wind Turbines Using Flow Augmentation Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
904
921
.10.1016/j.rser.2017.01.160
12.
Kılavuz
,
F.
, and
Goren Kiral
,
B.
,
2024
, “
Design Optimization of Mechanical Valves in Dishwashers Based on the Minimization of Pressure Losses
,”
Strojniški Vestn. - J. Mech. Eng.
,
70
(
3–4
), pp.
194
208
.10.5545/sv-jme.2023.768
13.
Ganesan
,
T.
, and
Jayarajan
,
N.
,
2023
, “
Aerodynamic Analysis of Mathematically Modelled Propeller for Small UAV Using CFD in Different Temperature Conditions
,”
Strojniški Vestn. - J. Mech. Eng.
,
69
(
11–12
), pp.
444
454
.10.5545/sv-jme.2023.601
14.
Li
,
L.
,
He
,
X.
,
Jiao
,
T.
,
Xiao
,
Y.
,
Wei
,
X.
, and
Li
,
W.
,
2023
, “
Design and Optimization of an Umbrella-Type Shield Based on 3D CFD Simulation Technology
,”
Strojniški Vestn. - J. Mech. Eng.
,
69
(
9–10
), pp.
422
432
.10.5545/sv-jme.2023.644
15.
Chemengich
,
S. J.
,
Kassab
,
S. Z.
, and
Lotfy
,
E. R.
,
2022
, “
Effect of the Variations of the Gap Flow Guides Geometry on the Savonius Wind Turbine Performance: 2D and 3D Studies
,”
J. Wind Eng. Ind. Aerodyn.
,
222
, p.
104920
.10.1016/j.jweia.2022.104920
16.
Dewan
,
A.
,
Tomar
,
S. S.
,
Bishnoi
,
A. K.
, and
Singh
,
T. P.
,
2023
, “
Computational Fluid Dynamics and Turbulence Modelling in Various Blades of Savonius Turbines for Wind and Hydro Energy: Progress and Perspectives
,”
Ocean Eng.
,
283
, p.
115168
.10.1016/j.oceaneng.2023.115168
17.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2018
, “
Towards Accurate CFD Simulations of Vertical Axis Wind Turbines at Different Tip Speed Ratios and Solidities: Guidelines for Azimuthal Increment, Domain Size and Convergence
,”
Energy Convers. Manage.
,
156
, pp.
301
316
.10.1016/j.enconman.2017.11.026
18.
Das Karmakar
,
S.
, and
Chattopadhyay
,
H.
,
2025
, “
Numerical Investigation of Duct Augmented Vertical Axis Wind Turbine With Cambered Airfoils
,”
ASME J. Fluids Eng.
,
147
(
5
), p.
051204
.10.1115/1.4067276
19.
Eltahwihy
,
S. M.
,
Abdelsalam
,
A. M.
,
Sakr
,
I. M.
, and
Ibrahim
,
K. A.
,
2022
, “
Investigating a Modified Vertical Axis Wind Turbine
,”
ERJ. Eng. Res. J.
,
45
(
4
), pp.
519
529
.10.21608/erjm.2022.139874.1175
20.
Aboujaoude
,
H.
,
Beaumont
,
F.
,
Murer
,
S.
,
Polidori
,
G.
, and
Bogard
,
F.
,
2022
, “
Aerodynamic Performance Enhancement of a Savonius Wind Turbine Using an Axisymmetric Deflector
,”
J. Wind Eng. Ind. Aerodyn.
,
220
, p.
104882
.10.1016/j.jweia.2021.104882
21.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2022
, “
Global Optimization of Savonius-Type Vertical Axis Wind Turbine With Multiple Circular-Arc Blades Using Validated 3D CFD Model
,”
Energy
,
241
, p.
122841
.10.1016/j.energy.2021.122841
22.
Dobrev
,
I.
,
Massouh
,
F.
, and
Memon
,
A.
,
2013
, “
Experimental and Numerical Study of Flow Around a Wind Turbine Rotor
,”
Int. J. Eng. Syst. Modell. Simul.
,
5
(
1/2/3
), pp.
137
146
.10.1504/IJESMS.2013.052380
23.
Marinić-Kragić
,
I.
,
Vučina
,
D.
, and
Milas
,
Z.
,
2022
, “
Robust Optimization of Savonius-Type Wind Turbine Deflector Blades Considering Wind Direction Sensitivity and Production Material Decrease
,”
Renewable Energy
,
192
, pp.
150
163
.10.1016/j.renene.2022.04.118
24.
Anh
,
D. L.
,
Phuong
,
N. T. T.
,
Ha
,
D. V.
,
Hung
,
T. T.
,
Minh
,
B. D.
, and
Truong
,
V.-T.
,
2024
, “
Enhancement of Aerodynamic Performance of Savonius Wind Turbine With Airfoil-Shaped Blade for the Urban Application
,”
Energy Convers. Manage.
,
310
, p.
118469
.10.1016/j.enconman.2024.118469
25.
Hassan Saeed
,
H. A.
,
Nagib Elmekawy
,
A. M.
, and
Kassab
,
S. Z.
,
2019
, “
Numerical Study of Improving Savonius Turbine Power Coefficient by Various Blade Shapes
,”
Alexandria Eng. J.
,
58
(
2
), pp.
429
441
.10.1016/j.aej.2019.03.005
26.
Hassanzadeh
,
R.
,
Mohammadnejad
,
M.
, and
Mostafavi
,
S.
,
2021
, “
Comparison of Various Blade Profiles in a Two-Blade Conventional Savonius Wind Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
021301
.10.1115/1.4047757
27.
Kerikous
,
E.
, and
Thévenin
,
D.
,
2019
, “
Optimal Shape of Thick Blades for a Hydraulic Savonius Turbine
,”
Renewable Energy
,
134
, pp.
629
638
.10.1016/j.renene.2018.11.037
28.
Mohamed
,
O. S.
,
Melani
,
P. F.
,
Soraperra
,
G.
,
Brighenti
,
A.
,
Balduzzi
,
F.
, and
Bianchini
,
A.
,
2025
, “
Selection Criteria for Rotor Number and Rotational Direction in Arrays of Closely Spaced Darrieus Turbines
,”
ASME J. Fluids Eng.
,
147
(
3
), p.
031101
.10.1115/1.4067007
29.
Yan
,
Y.
,
Avital
,
E.
,
Williams
,
J.
, and
Cui
,
J.
,
2020
, “
Performance Improvements for a Vertical Axis Wind Turbine by Means of Gurney Flap
,”
ASME J. Fluids Eng.
,
142
(
2
), p.
021205
.10.1115/1.4044995
30.
Alom
,
N.
,
Saha
,
U. K.
, and
Dewan
,
A.
,
2021
, “
In the Quest of an Appropriate Turbulence Model for Analyzing the Aerodynamics of a Conventional Savonius (S-Type) Wind Rotor
,”
J. Renewable Sustainable Energy
,
13
(
2
), p.
023313
.10.1063/5.0034362
31.
Lee
,
J.-H.
,
Lee
,
Y.-T.
, and
Lim
,
H.-C.
,
2016
, “
Effect of Twist Angle on the Performance of Savonius Wind Turbine
,”
Renewable Energy
,
89
, pp.
231
244
.10.1016/j.renene.2015.12.012
32.
Mohamed
,
M. H.
,
Alqurashi
,
F.
, and
Thévenin
,
D.
,
2021
, “
Performance Enhancement of a Savonius Turbine Under Effect of Frontal Guiding Plates
,”
Energy Rep.
,
7
, pp.
6069
6076
.10.1016/j.egyr.2021.09.021
33.
Anh
,
D. L.
,
Minh
,
B. D.
,
Tam
,
H. V.
, and
Hung
,
T. T.
,
2022
, “
Modified Savonius Wind Turbine for Wind Energy Harvesting in Urban Environments
,”
ASME J. Fluids Eng.
,
144
(
8
), p.
081501
.10.1115/1.4053619
34.
Anh
,
D. L.
,
Minh
,
B. D.
, and
Trinh
,
C. D.
,
2022
, “
High Efficiency Energy Harvesting Using a Savonius Turbine With Multicurve and Auxiliary Blade
,”
ASME J. Fluids Eng.
,
144
(
11
), p.
111207
.10.1115/1.4054705
35.
Ferrari
,
G.
,
Federici
,
D.
,
Schito
,
P.
,
Inzoli
,
F.
, and
Mereu
,
R.
,
2017
, “
CFD Study of Savonius Wind Turbine: 3D Model Validation and Parametric Analysis
,”
Renewable Energy
,
105
, pp.
722
734
.10.1016/j.renene.2016.12.077
36.
Tian
,
W.
,
Mao
,
Z.
,
Zhang
,
B.
, and
Li
,
Y.
,
2018
, “
Shape Optimization of a Savonius Wind Rotor With Different Convex and Concave Sides
,”
Renewable Energy
,
117
, pp.
287
299
.10.1016/j.renene.2017.10.067
37.
Minh
,
B. D.
,
Hung
,
T. T.
,
Khiem
,
P. V.
, and
Anh
,
D. L.
,
2023
, “
Predicting Aerodynamic Performance of Savonius Wind Turbine: An Application of Generalized k-ω Turbulence Model
,”
Ocean Eng.
,
286
, p.
115690
.10.1016/j.oceaneng.2023.115690
38.
Rezaeiha
,
A.
,
Montazeri
,
H.
, and
Blocken
,
B.
,
2019
, “
On the Accuracy of Turbulence Models for CFD Simulations of Vertical Axis Wind Turbines
,”
Energy
,
180
, pp.
838
857
.10.1016/j.energy.2019.05.053
39.
Sun
,
X.
,
Luo
,
D.
,
Huang
,
D.
, and
Wu
,
G.
,
2012
, “
Numerical Study on Coupling Effects Among Multiple Savonius Turbines
,”
J. Renewable Sustainable Energy
,
4
(
5
), p.
053107
.10.1063/1.4754438
40.
Blackwell
,
B. F.
,
Feltz
,
L. V.
, and
Sheldahl
,
R. E.
,
1977
,
Wind Tunnel Performance Data for Two- and Three-Bucket Savonius Rotors
,
Sandia Laboratories
,
Springfield, VA
.
41.
Anh
,
D. L.
,
Doan
,
V. H.
,
Thu
,
P. N. T.
,
Tran
,
H. T.
,
Truong
,
V. A.
,
Do Van
,
M.
,
Nguyen
,
D. D.
, and
Banh
,
M. D.
,
2025
, “
Performance Assessment of Savonius Wind Turbine: Impact of the Cylindrical Deflectors With Natural Shapes
,”
Ocean Eng.
,
315
, p.
119900
.10.1016/j.oceaneng.2024.119900
42.
Fatahian
,
E.
,
Ismail
,
F.
,
Hafifi Hafiz Ishak
,
M.
, and
Shyang Chang
,
W.
,
2022
, “
An Innovative Deflector System for Drag-Type Savonius Turbine Using a Rotating Cylinder for Performance Improvement
,”
Energy Convers. Manage.
,
257
, p.
115453
.10.1016/j.enconman.2022.115453
43.
Minh
,
B. D.
,
Hung
,
T. T.
,
Duc
,
N. D.
,
Trinh
,
C. D.
, and
Anh
,
D. L.
,
2023
, “
Performance Enhancement of Savonius Wind Turbine by Multicurve Blade Shape
,”
Energy Sources, Part A: Recovery, Util., Environ. Eff.
,
45
(
1
), pp.
1624
1642
.10.1080/15567036.2023.2180114
44.
Singh
,
O.
,
Saini
,
G.
, and
De
,
A.
,
2024
, “
Hydrodynamic Performance Enhancement of Savonius Hydrokinetic Turbine Using Wedge-Shaped Triangular Deflector in Conjunction With Circular Deflector
,”
Ocean Eng.
,
292
, p.
116572
.10.1016/j.oceaneng.2023.116572
45.
Dewan
,
A.
,
Bishnoi
,
A. K.
,
Singh
,
T. P.
, and
Tomar
,
S. S.
,
2023
, “
Elliptical Bladed Savonius Rotor for Wind Energy: Efficacy of RANS Modeling for Flow Characteristics
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p.
051301
.10.1115/1.4056275
46.
Ghafoorian
,
F.
,
Mirmotahari
,
S. R.
, and
Wan
,
H.
,
2024
, “
Numerical Study on Aerodynamic Performance Improvement and Efficiency Enhancement of the Savonius Vertical Axis Wind Turbine With Semi-Directional Airfoil Guide Vane
,”
Ocean Eng.
,
307
, p.
118186
.10.1016/j.oceaneng.2024.118186
47.
Spalart
,
P.
, and
Allmaras
,
S.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA
Paper No. 92-439.10.2514/6.92-439
48.
Dacles-Mariani
,
J.
,
Zilliac
,
G. G.
,
Chow
,
J. S.
, and
Bradshaw
,
P.
,
1995
, “
Numerical/Experimental Study of a Wingtip Vortex in the Near Field
,”
AIAA J.
,
33
(
9
), pp.
1561
1568
.10.2514/3.12826
49.
ANSYS, Inc.
,
2021
,
ANSYS FLUENT Theory Guide
,
ANSYS
, Canonsburg, PA.
50.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
,
DCW Industries
, La Cañada, CA.
51.
Menter
,
F.
,
1993
, “
Zonal Two Equation k-w Turbulence Models For Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.93-2906
52.
Menter
,
F.
,
Lechner
,
R.
, and
Matyushenko
,
A.
,
2019
, “
Best Practice: Generalized k-ω Two-Equation Turbulence Model in ANSYS CFD (GEKO)
,”
ANSYS Germany GmbH
, Otterfing, Germany, St. Petersburg, Russia.https://www.ansys.com/content/dam/amp/2022/march/quick-request/Best-Practice-GEKO-Turbulence-Modeling-in-Ansys-CFD.pdf
53.
Jung
,
Y.-K.
,
Chang
,
K.
,
Bae
,
J. H.
, and
Song
,
Z.
,
2021
, “
Uncertainty Quantification of GEKO Model Coefficients on Compressible Flows
,”
Int. J. Aerosp. Eng.
,
2021
, pp.
1
17
.10.1155/2021/9998449
54.
Blocken
,
B.
,
van Druenen
,
T.
,
Toparlar
,
Y.
,
Malizia
,
F.
,
Mannion
,
P.
,
Andrianne
,
T.
,
Marchal
,
T.
,
Maas
,
G.-J.
, and
Diepens
,
J.
,
2018
, “
Aerodynamic Drag in Cycling Pelotons: New Insights by CFD Simulation and Wind Tunnel Testing
,”
J. Wind Eng. Ind. Aerodyn.
,
179
, pp.
319
337
.10.1016/j.jweia.2018.06.011
55.
Menter
,
F. R.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
(
1–4
), pp.
277
303
.10.1007/s10494-006-9047-1
56.
Langtry
,
R. B.
, and
Menter
,
F. R.
,
2009
, “
Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes
,”
AIAA J.
,
47
(
12
), pp.
2894
2906
.10.2514/1.42362
57.
Langtry
,
R. B.
,
Menter
,
F. R.
,
Likki
,
S. R.
,
Suzen
,
Y. B.
,
Huang
,
P. G.
, and
Völker
,
S.
,
2004
, “
A Correlation-Based Transition Model Using Local Variables: Part II—Test Cases and Industrial Applications
,”
ASME
Paper No. TURBO-05-1023.10.1115/1.2184353
58.
Blocken
,
B.
,
van Druenen
,
T.
,
Toparlar
,
Y.
, and
Andrianne
,
T.
,
2018
, “
Aerodynamic Analysis of Different Cyclist Hill Descent Positions
,”
J. Wind Eng. Ind. Aerodyn.
,
181
, pp.
27
45
.10.1016/j.jweia.2018.08.010
59.
Dung
,
N. T.
,
Le
,
D. A.
,
Do
,
V. M.
,
Nguyen
,
A. T.
, and
Tran
,
T. H.
,
2024
, “
Effect of Splitter Angles on Characteristics of Mixing Layer Flow: A Numerical Study
,”
J. Appl. Comput. Mech.
,
11
(
1
), pp.
39
54
.10.22055/jacm.2024.46204.4480
You do not currently have access to this content.