Abstract

There is a significant need to reduce the aerodynamic drag of ground vehicles. As a result, the active and passive methods of flow control around bluff bodies have been extensively studied to improve aerodynamic performance. In this study, the drag reduction by combining rear flaps and plasma actuators (PAs) is experimentally investigated. PAs are modern active flow control devices that leverage nonthermal plasma, whereas flaps are traditional passive flow control devices. Flaps and PAs are mounted on the square back of the truck model, and the effect of the flap mounting locations (top or side of the model), flap angle, and flap length are investigated at ReH=1.58×105. For both top and side flaps, the longer flaps result in greater drag reduction compared to shorter flaps in the absence of PA actuation. However, additional drag reduction with PA actuation is minimal for the longer flaps, and the flap angle at which drag reaches a local minimum remained unchanged. This is attributed to an increase in pressure drag on the flap as the flap angle increases when the flow is attached to the flap surface. In contrast, PA actuation with shorter flaps demonstrates drag reduction, due to the smaller surface area of the flaps. These results suggest that optimizing the flap angle and length is a promising strategy to maximize the aerodynamic benefits of PA actuation and reduce the drag on bluff bodies.

References

1.
Ritchie
,
H.
,
2020
, “
Cars, Planes, Trains: Where Do CO2 Emissions From Transport Come From?
,” Our World in Data, UK, accessed June 6, 2025, https://ourworldindata.org/co2-emissions-from-transport
2.
Hucho
,
W.
, and
Sovran
,
G.
,
1993
, “
Aerodynamics of Road Vehicles
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
485
537
.10.1146/annurev.fl.25.010193.002413
3.
Barros
,
D.
,
Borée
,
J.
,
Noack
,
B. R.
,
Spohn
,
A.
, and
Ruiz
,
T.
,
2016
, “
Bluff Body Drag Manipulation Using Pulsed Jets and Coanda Effect
,”
J. Fluid Mech.
,
805
, pp.
422
459
.10.1017/jfm.2016.508
4.
Choi
,
H.
,
Lee
,
J.
, and
Park
,
H.
,
2014
, “
Aerodynamics of Heavy Vehicles
,”
Rev. Fluid Mech.
,
46
(
1
), pp.
441
468
.10.1146/annurev-fluid-011212-140616
5.
Ahmed
,
S.
,
Ramm
,
G.
, and
Faltin
,
G.
,
1984
, “
Some Salient Features of the Time-Averaged Ground Vehicle Wake
,”
SAE
Paper No. 840300.10.4271/840300
6.
Han
,
T.
,
Sumantran
,
V.
,
Harris
,
C.
,
Kuzmanov
,
T.
,
Huebler
,
M.
, and
Zak
,
T.
,
1996
, “
Flow-Field Simulations of Three Simplified Vehicle Shapes and Comparisons With Experimental Measurements
,”
SAE
Paper No. 960678.10.4271/960678
7.
Haffner
,
Y.
,
Li
,
R.
,
Meldi
,
M.
, and
Borée
,
J.
,
2022
, “
Drag Reduction of a Square-Back Bluff Body Under Constant Cross-Wind Conditions Using Asymmetric Shear Layer Forcing
,”
Int. J. Heat Fluid Flow
,
96
, p.
109003
.10.1016/j.ijheatfluidflow.2022.109003
8.
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Balachandar
,
R.
,
2021
, “
Characteristics of Flow Past Elongated Bluff Bodies With Underbody Gaps Due to Varying Inflow Turbulence
,”
Phys. Fluids
,
33
(
12
), p.
125106
.10.1063/5.0072390
9.
Islam
,
A.
,
Gaylard
,
A.
, and
Thornber
,
B.
,
2017
, “
A Detailed Statistical Study of Unsteady Wake Dynamics From Automotive Bluff Bodies
,”
J. Wind Eng. Ind. Aerodyn.
,
171
, pp.
161
177
.10.1016/j.jweia.2017.09.009
10.
Zhang
,
B. F.
,
Zhou
,
Y.
, and
To
,
S.
,
2015
, “
Unsteady Flow Structures Around a High-Drag Ahmed Body
,”
J. Fluid Mech.
,
777
, pp.
291
326
.10.1017/jfm.2015.332
11.
Fuller
,
J.
, and
Passmore
,
M. A.
,
2014
, “
The Importance of Rear Pillar Geometry on Fastback Wake Structures
,”
J. Wind Eng. Ind. Aerodyn.
,
125
, pp.
111
120
.10.1016/j.jweia.2013.11.002
12.
Perry
,
A.-K.
,
Pavia
,
G.
, and
Passmore
,
M.
,
2016
, “
Influence of Short Rear End Tapers on the Wake of a Simplified Square-Back Vehicle: Wake Topology and Rear Drag
,”
Exp. Fluids
,
57
(
11
), p.
169
.10.1007/s00348-016-2260-3
13.
Thacker
,
A.
,
Aubrun
,
S.
,
Leroy
,
A.
, and
Devinant
,
P.
,
2012
, “
Effects of Suppressing the 3D Separation on the Rear Slant on the Flow Structures Around an Ahmed Body
,”
J. Wind Eng. Ind. Aerodyn.
,
107–108
, pp.
237
243
.10.1016/j.jweia.2012.04.022
14.
Rossitto
,
G.
,
Sicot
,
C.
,
Ferrand
,
V.
,
Borée
,
J.
, and
Harambat
,
F.
,
2016
, “
Influence of Afterbody Rounding on the Pressure Distribution Over a Fastback Vehicle
,”
Exp. Fluids
,
57
(
3
), p.
43
.10.1007/s00348-016-2120-1
15.
Bao
,
D.
,
Borée
,
J.
,
Haffner
,
Y.
, and
Sicot
,
C.
,
2022
, “
Near Wake Interactions and Drag Increase Regimes for a Square-Back Bluff Body
,”
J. Fluid Mech.
,
936
, p.
A2
.10.1017/jfm.2022.28
16.
Bao
,
D.
,
Borée
,
J.
,
Sicot
,
C.
, and
Roebroeck
,
C.
,
2024
, “
Influence of Vehicle Back Shape on Wheel-Vehicle Aerodynamic Interactions: A Model Study
,”
Exp. Fluids
,
65
(
4
), p.
50
.10.1007/s00348-024-03790-4
17.
Pavia
,
G.
,
Passmore
,
M. A.
,
Varney
,
M.
, and
Hodgson
,
G.
,
2020
, “
Salient Three-Dimensional Features of the Turbulent Wake of a Simplified Square-Back Vehicle
,”
J. Fluid Mech.
,
888
, p.
A33
.10.1017/jfm.2020.71
18.
Bello-Millán
,
F.
,
Mäkelä
,
T.
,
Parras
,
L.
,
del Pino
,
C.
, and
Ferrera
,
C.
,
2016
, “
Experimental Study on Ahmed's Body Drag Coefficient for Different Yaw Angles
,”
J. Wind Eng. Ind. Aerodyn.
,
157
, pp.
140
144
.10.1016/j.jweia.2016.08.005
19.
Urquhart
,
M.
,
Varney
,
M.
,
Sebben
,
S.
, and
Passmore
,
M.
,
2021
, “
Drag Reduction Mechanisms on a Generic Square-Back Vehicle Using an Optimised Yaw-Insensitive Base Cavity
,”
Exp. Fluids
,
62
(
12
), p.
241
.10.1007/s00348-021-03334-0
20.
Strachan
,
R. K.
,
Knowles
,
K.
, and
Lawson
,
N. J.
,
2007
, “
The Vortex Structure Behind an Ahmed Reference Model in the Presence of a Moving Ground Plane
,”
Exp. Fluids
,
42
(
5
), pp.
659
669
.10.1007/s00348-007-0270-x
21.
Rejniak
,
A. A.
, and
Gatto
,
A.
,
2021
, “
Influence of Rotating Wheels and Moving Ground Use on the Unsteady Wake of a Small-Scale Road Vehicle
,”
Flow, Turbul. Combust.
,
106
(
1
), pp.
109
137
.10.1007/s10494-020-00180-8
22.
Anderson
,
J.
,
2017
,
Fundamentals of Aerodynamics
(McGraw-Hill Series in Aeronautical and Aerospace Engineering),
McGraw-Hill Education
, New York.
23.
Markina
,
A. A.
,
Lukashuk
,
A. D.
,
Chepkasov
,
S. N.
, and
Starovoytenko
,
A. V.
,
2020
, “
Improving Aerodynamic Characteristics for Drag Reduction of Heavy Truck
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
862
(
3
), p.
032032
.10.1088/1757-899X/862/3/032032
24.
Beaudoin
,
J.-F.
, and
Aider
,
J.-L.
,
2008
, “
Drag and Lift Reduction of a 3D Bluff Body Using Flaps
,”
Exp. Fluids
,
44
(
4
), pp.
491
501
.10.1007/s00348-007-0392-1
25.
Fourrié
,
G.
,
Keirsbulck
,
L.
,
Labraga
,
L.
, and
Gilliéron
,
P.
,
2011
, “
Bluff-Body Drag Reduction Using a Deflector
,”
Exp. Fluids
,
50
(
2
), pp.
385
395
.10.1007/s00348-010-0937-6
26.
Aider
,
J.-L.
,
Beaudoin
,
J.-F.
, and
Wesfreid
,
J. E.
,
2010
, “
Drag and Lift Reduction of a 3D Bluff-Body Using Active Vortex Generators
,”
Exp. Fluids
,
48
(
5
), pp.
771
789
.10.1007/s00348-009-0770-y
27.
Giannenas
,
A. E.
,
Laizet
,
S.
, and
Rigas
,
G.
,
2022
, “
Harmonic Forcing of a Laminar Bluff Body Wake With Rear Pitching Flaps
,”
J. Fluid Mech.
,
945
, p.
A5
.10.1017/jfm.2022.520
28.
Garcia de la Cruz
,
J.
,
Brackston
,
R.
, and
Morrison
,
J.
,
2017
, “
Adaptive Base-Flaps Under Variable Cross-Wind
,”
SAE
Paper No. 2017-01-7000.10.4271/2017-01-7000
29.
Camacho-Sánchez
,
J. M.
,
Lorite-Díez
,
M.
,
Jiménez-González
,
J. I.
,
Cadot
,
O.
, and
Martínez-Bazán
,
C.
,
2023
, “
Experimental Study on the Effect of Adaptive Flaps on the Aerodynamics of an Ahmed Body
,”
Phys. Rev. Fluids
,
8
(
4
), p.
044605
.10.1103/PhysRevFluids.8.044605
30.
Muñoz-Hervás
,
J.
,
Lorite-Díez
,
M.
,
García-Baena
,
C.
, and
Jiménez-González
,
J.
,
2024
, “
Experimental Investigation of Rear Flexible Flaps Interacting With the Wake Dynamics Behind a Squareback Ahmed Body
,”
J. Fluids Struct.
,
127
, p.
104124
.10.1016/j.jfluidstructs.2024.104124
31.
Haffner
,
Y.
,
Castelain
,
T.
,
Borée
,
J.
, and
Spohn
,
A.
,
2021
, “
Manipulation of Three-Dimensional Asymmetries of a Turbulent Wake for Drag Reduction
,”
J. Fluid Mech.
,
912
, p.
A6
.10.1017/jfm.2020.1133
32.
Li
,
R.
,
Borée
,
J.
,
Noack
,
B. R.
,
Cordier
,
L.
, and
Harambat
,
F.
,
2019
, “
Drag Reduction Mechanisms of a Car Model at Moderate Yaw by Bi-Frequency Forcing
,”
Phys. Rev. Fluids
,
4
(
3
), p.
034604
.10.1103/PhysRevFluids.4.034604
33.
Kim
,
J.
, and
Choi
,
H.
,
2005
, “
Distributed Forcing of Flow Over a Circular Cylinder
,”
Phys. Fluids
,
17
(
3
), p.
033103
.10.1063/1.1850151
34.
Corke
,
T. C.
,
Post
,
M. L.
, and
Orlov
,
D. M.
,
2009
, “
Single Dielectric Barrier Discharge Plasma Enhanced Aerodynamics: Physics, Modeling and Applications
,”
Exp. Fluids
,
46
(
1
), pp.
1
26
.10.1007/s00348-008-0582-5
35.
Benard
,
N.
,
Cattafesta
,
L. N.
, III
,
Moreau
,
E.
,
Griffin
,
J.
, and
Bonnet
,
J. P.
,
2011
, “
On the Benefits of Hysteresis Effects for Closed-Loop Separation Control Using Plasma Actuation
,”
Phys. Fluids
,
23
(
8
), p.
083601
.10.1063/1.3614482
36.
Benard
,
N.
, and
Moreau
,
E.
,
2014
, “
Electrical and Mechanical Characteristics of Surface AC Dielectric Barrier Discharge Plasma Actuators Applied to Air Flow Control
,”
Exp. Fluids
,
55
(
11
), p.
1846
.10.1007/s00348-014-1846-x
37.
Corke
,
T. C.
,
Enloe
,
C. L.
, and
Wilkinson
,
S. P.
,
2010
, “
Dielectric Barrier Discharge Plasma Actuators for Flow Control
,”
Annu. Rev. Fluid Mech.
,
42
(
1
), pp.
505
529
.10.1146/annurev-fluid-121108-145550
38.
Kaneko
,
Y.
,
Yamanaka
,
A.
, and
Nishida
,
H.
,
2024
, “
Data Assimilation to Determine the Electrohydrodynamic Force of Plasma Actuator
,”
Sens. Actuators A: Phys.
,
372
, p.
115320
.10.1016/j.sna.2024.115320
39.
Sato
,
S.
,
Enokido
,
T.
,
Ashikawa
,
K.
,
Matsubara
,
M.
,
Kanie
,
K.
, and
Ohnishi
,
N.
,
2021
, “
Development of a Flexible Dielectric-Barrier-Discharge Plasma Actuator Fabricated by Inkjet Printing Using Silver Nanoparticles-Based Ink
,”
Sens. Actuators A: Phys.
,
330
, p.
112823
.10.1016/j.sna.2021.112823
40.
Asada
,
K.
,
Ninomiya
,
Y.
,
Fujii
,
K.
, and
Oyama
,
A.
,
2009
, “
Airfoil Flow Experiment on the Duty Cycle of DBD Plasma Actuator
,”
AIAA
Paper No.
2009
531
.10.2514/6.2009?531
41.
Shimomura
,
S.
,
Sekimoto
,
S.
,
Oyama
,
A.
,
Fujii
,
K.
, and
Nishida
,
H.
,
2020
, “
Closed-Loop Flow Separation Control Using the Deep Q Network Over Airfoil
,”
AIAA J.
,
58
(
10
), pp.
4260
4270
.10.2514/1.J059447
42.
Zhang
,
X.
,
Choi
,
K.-S.
,
Huang
,
Y.
, and
Li
,
H.-X.
,
2019
, “
Flow Control Over a Circular Cylinder Using Virtual Moving Surface Boundary Layer Control
,”
Exp. Fluids
,
60
(
6
), p.
104
.10.1007/s00348-019-2745-y
43.
Wang
,
L.
,
Alam
,
M. M.
, and
Zhou
,
Y.
,
2021
, “
Drag Reduction of Circular Cylinder Using Linear and Sawtooth Plasma Actuators
,”
Phys. Fluids
,
33
(
12
), p.
124105
.10.1063/5.0077700
44.
Rodrigues
,
F.
,
Abdollahzadehsangroudi
,
M.
,
Nunes-Pereira
,
J.
, and
Páscoa
,
J.
,
2022
, “
Recent Developments on Dielectric Barrier Discharge (DBD) Plasma Actuators for Icing Mitigation
,”
Actuators
,
12
(
1
), p.
5
.10.3390/act12010005
45.
Boeuf
,
J. P.
,
Lagmich
,
Y.
,
Unfer
,
T.
,
Callegari
,
T.
, and
Pitchford
,
L. C.
,
2007
, “
Electrohydrodynamic Force in Dielectric Barrier Discharge Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
40
(
3
), pp.
652
662
.10.1088/0022-3727/40/3/S03
46.
Moreau
,
E.
,
Cazour
,
J.
, and
Benard
,
N.
,
2018
, “
Influence of the Air-Exposed Active Electrode Shape on the Electrical, Optical and Mechanical Characteristics of a Surface Dielectric Barrier Discharge Plasma Actuator
,”
J. Electrostat.
,
93
, pp.
146
153
.10.1016/j.elstat.2018.04.005
47.
Nakano
,
A.
, and
Nishida
,
H.
,
2019
, “
The Effect of the Voltage Waveform on Performance of Dielectric Barrier Discharge Plasma Actuator
,”
J. Appl. Phys.
,
126
(
17
), p.
173303
.10.1063/1.5116066
48.
Hehner
,
M. T.
,
Gatti
,
D.
, and
Kriegseis
,
J.
,
2019
, “
Stokes-Layer Formation Under Absence of Moving Parts—A Novel Oscillatory Plasma Actuator Design for Turbulent Drag Reduction
,”
Phys. Fluids
,
31
(
5
), p.
051701
.10.1063/1.5094388
49.
Da Silva
,
G. P. G.
,
Eguea
,
J. P.
,
Croce
,
J. A. G.
, and
Catalano
,
F. M.
,
2020
, “
Slat Aerodynamic Noise Reduction Using Dielectric Barrier Discharge Plasma Actuators
,”
Aerosp. Sci. Technol.
,
97
, p.
105642
.10.1016/j.ast.2019.105642
50.
Rodrigues
,
F.
,
Pascoa
,
J.
, and
Trancossi
,
M.
,
2018
, “
Heat Generation Mechanisms of DBD Plasma Actuators
,”
Exp. Therm. Fluid Sci.
,
90
, pp.
55
65
.10.1016/j.expthermflusci.2017.09.005
51.
Abdollahzadeh
,
M.
,
Páscoa
,
J. C.
, and
Oliveira
,
P. J.
,
2014
, “
Two-Dimensional Numerical Modeling of Interaction of Micro-Shock Wave Generated by Nanosecond Plasma Actuators and Transonic Flow
,”
J. Comput. Appl. Math.
,
270
, pp.
401
416
.10.1016/j.cam.2013.12.030
52.
Kaneko
,
Y.
,
Nishida
,
H.
, and
Tagawa
,
Y.
,
2022
, “
Visualization of the Electrohydrodynamic and Thermal Effects of AC-DBD Plasma Actuators of Plate- and Wire-Exposed Electrodes
,”
Actuators
,
11
(
2
), p.
38
.10.3390/act11020038
53.
Meng
,
X.
,
Hu
,
H.
,
Li
,
C.
,
Abbasi
,
A. A.
,
Cai
,
J.
, and
Hu
,
H.
,
2019
, “
Mechanism Study of Coupled Aerodynamic and Thermal Effects Using Plasma Actuation for Anti-Icing
,”
Phys. Fluids
,
31
(
3
), p.
037103
.10.1063/1.5086884
54.
Zheng
,
J.
,
Cui
,
Y.
,
Zhao
,
Z.
,
Li
,
J.
, and
Khoo
,
B.
,
2016
, “
Investigation of Airfoil Leading Edge Separation Control With Nanosecond Plasma Actuator
,”
Phys. Rev. Fluids
,
1
(
7
), p.
073501
.10.1103/PhysRevFluids.1.073501
55.
Kim
,
D.
,
Do
,
H.
, and
Choi
,
H.
,
2020
, “
Drag Reduction on a Three-Dimensional Model Vehicle Using a Wire-to-Plate DBD Plasma Actuator
,”
Exp. Fluids
,
61
(
6
), p.
135
.10.1007/s00348-020-02961-3
56.
Rodrigues
,
F. F.
,
Moreira
,
M.
, and
Pascoa
,
J.
,
2021
, “
Analysis and Implementation of Dielectric Barrier Discharge Plasma Actuators for Ground Vehicles Wake Reduction
,”
ASME
Paper No. FEDSM2021-65735.10.1115/FEDSM2021-65735
57.
Vernet
,
J. A.
,
Örlü
,
R.
,
Söderblom
,
D.
,
Elofsson
,
P.
, and
Alfredsson
,
P. H.
,
2018
, “
Plasma Streamwise Vortex Generators for Flow Separation Control on Trucks: A Proof-of-Concept Experiment
,”
Flow, Turbul. Combust.
,
100
(
4
), pp.
1101
1109
.10.1007/s10494-018-9891-9
58.
Roy
,
S.
,
Zhao
,
P.
,
DasGupta
,
A.
, and
Soni
,
J.
,
2016
, “
Dielectric Barrier Discharge Actuator for Vehicle Drag Reduction at Highway Speeds
,”
AIP Adv.
,
6
(
2
), p.
025322
.10.1063/1.4942979
59.
El-Alti
,
M.
,
Chernoray
,
V.
,
Kjellgren
,
P.
,
Hjelm
,
L.
, and
Davidson
,
L.
,
2016
, “
Computations and Full-Scale Tests of Active Flow Control Applied on a VOLVO Truck-Trailer
,”
The Aerodynamics of Heavy Vehicles III
,
A.
Dillmann
and
A.
Orellano
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
253
267
.
60.
Westerweel
,
J.
, and
Scarano
,
F.
,
2005
, “
Universal Outlier Detection for PIV Data
,”
Exp. Fluids
,
39
(
6
), pp.
1096
1100
.10.1007/s00348-005-0016-6
61.
Ahmed
,
S. R.
,
1983
, “
Influence of Base Slant on the Wake Structure and Drag of Road Vehicles
,”
ASME J. Fluids Eng.
,
105
(
4
), pp.
429
434
.10.1115/1.3241024
62.
Sekimoto
,
S.
,
Nonomura
,
T.
, and
Fujii
,
K.
,
2017
, “
Burst-Mode Frequency Effects of Dielectric Barrier Discharge Plasma Actuator for Separation Control
,”
AIAA J.
,
55
(
4
), pp.
1385
1392
.10.2514/1.J054678
63.
Sato
,
M.
,
Okada
,
K.
,
Asada
,
K.
,
Aono
,
H.
,
Nonomura
,
T.
, and
Fujii
,
K.
,
2020
, “
Unified Mechanisms for Separation Control Around Airfoil Using Plasma Actuator With Burst Actuation Over Reynolds Number Range of 103–106
,”
Phys. Fluids
,
32
(
2
), p.
025102
.10.1063/1.5136072
64.
Mishra
,
B. K.
, and
Panigrahi
,
P. K.
,
2017
, “
Formation and Characterization of the Vortices Generated by a DBD Plasma Actuator in Burst Mode
,”
Phys. Fluids
,
29
(
2
), p.
024104
.10.1063/1.4975156
65.
Emori
,
K.
,
Kaneko
,
Y.
, and
Nishida
,
H.
,
2022
, “
Classification of Flow-Field Patterns in Burst-Mode Actuation of a Dielectric-Barrier-Discharge Plasma Actuator
,”
Phys. Fluids
,
34
(
2
), p.
023601
.10.1063/5.0077425
You do not currently have access to this content.