Abstract

In this work, a discrete phase model (DPM) is applied to simulate the transport of soot and oil particles in a multiblade centrifugal fan, in which a critical velocity model is established to model the particle deposition, rebound, and detachment on the blade surface. Alongside the DPM simulations, a multi-objective optimization of the blade profile is conducted with the objective of improving the aerodynamic performance of the fan and reducing the deposition of soot and oil particles on the impeller, which employs a self-adaptive updated Kriging model, the Latin hypercube sampling method and the non-dominated sorting genetic algorithm II to find tradeoff solutions. The results indicate that the aerodynamic performance of the fan is most influenced by the outlet angle, and increasing outlet angle is beneficial to increasing the total pressure and flowrate. The deposition of particles on the impeller is greatly affected by the outlet angle and wrap angle, and increasing outlet angle and decreasing wrap angle both lead to a significant reduction of the particle deposition on the impeller. For either baseline or optimized blade, the regions with high entropy generation rate are mainly distributed near the leading and trailing edges, while the entropy generation rate is greatly reduced after optimization. For the optimized blade, the deposition distribution is similar to the baseline blade, but the deposition rate is decreased by 40.5%, which agrees well with the experimental results.

References

1.
Zhao
,
Y.
,
Tan
,
J.
,
Dang
,
F.
, and Li, J.,
2015
, “
Optimization Design of Centrifugal Fan Inlet Collector by Response Surface Methodology
,”
J. Xi'an Jiaotong Univ.
,
49
(
11
), pp.
49
54
.https://link.oversea.cnki.net/doi/10.7652/xjtuxb201511009
2.
Akbari
,
G.
,
Montazerin
,
N.
, and
Akbarizadeh
,
M.
,
2012
, “
Stereoscopic Particle Image Velocimetry of the Flow Field in the Rotor Exit Region of a Forward-Blade Centrifugal Turbomachine
,”
Proc. Inst. Mech. Eng. Part A-J. Power Energy
,
226
(
2
), pp.
163
181
.10.1177/0957650911430285
3.
Raj
,
D.
, and
Swim
,
W.
,
1981
, “
Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of an FC Centrifugal Fan Rotor
,”
ASME J. Eng. Power
,
103
(
2
), pp.
393
399
.10.1115/1.3230733
4.
Botros
,
M.
,
Hanna
,
D.
,
Boulos
,
J.
, and Lai, M.,
1999
, “
New Apparatus and Blower Centrifugal Fan Design Features to Improve Its Performance
,”
ASME
Paper No. IMECE1999-1219.10.1115/IMECE1999-1219
5.
Zhao
,
X.
,
Sun
,
J.
,
He
,
Y.
, and Lin, K.,
2016
, “
Numerical and Experimental Investigation of Noise Radiation for Double-Suction Centrifugal Fans of Air-Conditioner Indoor Unit
,”
ASME
Paper No. GT2016-56773.10.1115/GT2016-56773
6.
Jin
,
T.
,
Wang
,
J.
,
Shao
,
S.
, Yan, M., Guo, B., and Wu, L.,
2019
, “
Numerical Analysis and Experimental Research of Multi-Blade Centrifugal Fan Based on Leading-Edge Serrated Blade
,”
J. Refrig.
,
40
(
1
), pp.
35
41
.https://link.oversea.cnki.net/doi/10.3969/j.issn.0253-4339.2019.01.035
7.
Wang
,
J.
,
Liu
,
X.
,
Tian
,
C.
, and
Xi
,
G.
,
2023
, “
Aerodynamic Performance Improvement and Noise Control for the Multi-Blade Centrifugal Fan by Using Bio-Inspired Blades
,”
Energy
,
263
, p.
125829
.10.1016/j.energy.2022.125829
8.
Liu
,
X.
,
Tang
,
H.
,
Wang
,
X.
, Xi, G., and Gao, D.,
2012
, “
Noise-Reduction Mechanism of Bionic Coupling Blade Based on the Trailing Edge of Goshawk Wing
,”
J. Xi'an Jiaotong Univ.
,
46
(
1
), pp.
34
51
.
9.
Sun
,
L.
,
Ma
,
C.
,
Song
,
P.
, and
Zhang
,
H.
,
2020
, “
Quantitative Computational Fluid Dynamic Analyses of Oil Droplets Deposition on Vaneless Diffusor Walls of a Centrifugal Compressor
,”
Energy Sci. Eng.
,
8
(
3
), pp.
910
921
.10.1002/ese3.561
10.
Jiang
,
B.
,
Xiao
,
Q.
,
Wang
,
J.
,
Liang
,
Z.
, and
Yang
,
X.
,
2023
, “
A Literature Review on the Squirrel-Cage Fans Using in HVAC Equipment: Powerful, Efficient, and Quiet Operation
,”
J. Build. Eng.
,
73
, p.
106691
.10.1016/j.jobe.2023.106691
11.
Peng
,
C.
,
Chen
,
Z.
, and
Tiwari
,
M.
,
2018
, “
All-Organic Superhydrophobic Coatings With Mechanochemical Robustness and Liquid Impalement Resistance
,”
Nat. Mater.
,
17
(
4
), pp.
355
360
.10.1038/s41563-018-0044-2
12.
Johnson
,
K.
,
Kendall
,
K.
, and
Roberts
,
A.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London A Math. Phys. Sci.
,
324
(
1558
), pp.
301
313
.10.1098/rspa.1971.0141
13.
Brach
,
R.
, and
Dunn
,
P.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microsphers
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.10.1080/02786829208959537
14.
Sreedharan
,
S.
, and
Tafti
,
D.
,
2011
, “
Composition Dependent Model for the Prediction of Syngas Ash Deposition in Turbine Gas Hotpath
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
201
211
.10.1016/j.ijheatfluidflow.2010.10.006
15.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2000
, “
Effect of Turbulence Modeling on Particle Dispersion and Deposition on Compressor and Turbine Blade Surfaces
,”
ASME
Paper No. 2000-GT-0519.10.1115/2000-GT-0519
16.
Casari
,
N.
,
Pinelli
,
M.
,
Suman
,
A.
,
Mare
,
L.
, and
Montomoli
,
F.
,
2018
, “
EBFOG: Deposition, Erosion, and Detachment on High-Pressure Turbine Vanes
,”
ASME J. Turbomach.
,
140
(
6
), p.
061001
.10.1115/1.4039181
17.
Yang
,
X.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2021
, “
Variations of Cooling Performance on Turbine Vanes Due to Incipient Particle Deposition
,”
Proc. Inst. Mech. Eng., Part A J. Power Energy
,
235
(
8
), pp.
1832
1846
.10.1177/09576509211010530
18.
Casaday
,
B.
,
Ameri
,
A.
, and
Bons
,
J.
,
2013
, “
Numerical Investigation of Ash Deposition on Nozzle Guide Vane Endwalls
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
032001
.10.1115/1.4007736
19.
Zhou
,
J.
, and
Zhang
,
J.
,
2016
, “
Effects of Partial Blockage Inside Film Holes on Overall Cooling Effectiveness of an Integrated Impingement-Fin-Film Cooling Configuration on Blade Pressure Side
,”
Hangkong Xuebao/Acta Aeronaut. Astronaut. Sin.
,
37
(
9
), pp.
2729
2738
.10.7527/S1000-6893.2016.0067
20.
Rozati
,
A.
,
Tafti
,
D.
, and
Sreedharan
,
S.
,
2011
, “
Effects of Syngas Ash Particle Size on Deposition and Erosion of a Film Cooled Leading Edge
,”
ASME J. Turbomach.
,
133
(
1
), p.
011010
.10.1115/1.4000492
21.
Benchikh
,
L.
,
Poncet
,
S.
, and
Fellouah
,
H.
,
2023
, “
Optimization of a Double-Intake Squirrel Cage Fan Using OpenFoam and Metamodels
,”
Int. J. Heat Fluid Flow
,
101
, p.
109129
.10.1016/j.ijheatfluidflow.2023.109129
22.
Xiao
,
Q.
,
Jang
,
B.
, and
Wang
,
J.
,
2020
, “
Volute Profile Design of the Squirrel Cage Fan Based on a B-Spline Curve Under Space Limitation
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
234
(
7
), pp.
889
899
.10.1177/0957650919888030
23.
Kim
,
J.-S.
,
Jeong
,
U.-C.
,
Kim
,
D.-W.
,
Han
,
S.-Y.
, and
Oh
,
J.-E.
,
2015
, “
Optimization of Sirocco Fan Blade to Reduce Noise of Air Purifier Using a Metamodel and Evolutionary Algorithm
,”
Appl. Acoust.
,
89
, pp.
254
266
.10.1016/j.apacoust.2014.10.005
24.
Benchikh
,
L.
,
Poncet
,
S.
, and
Fellouah
,
H.
,
2021
, “
CFD Modeling and Optimization by Metamodels of a Squirrel Cage Fan Using OpenFoam and Dakota: Ventilation Applications
,”
Build. Environ.
,
205
, p.
108145
.10.1016/j.buildenv.2021.108145
25.
Zhang
,
L.
,
He
,
R.
,
Wang
,
X.
,
Zhang
,
Q.
, and
Wang
,
S.
,
2019
, “
Study on Static and Dynamic Characteristics of an Axial Fan With Abnormal Blade Under Rotating Stall Conditions
,”
Energy
,
170
, pp.
305
325
.10.1016/j.energy.2018.12.125
26.
Son
,
P. N.
,
Kim
,
J. W.
,
Byun
,
S. M.
, and
Ahn
,
E. Y.
,
2012
, “
Effects of Inlet Radius and Bell Mouth Radius on Flow Rate and Sound Quality of Centrifugal Blower
,”
J. Mech. Sci. Technol.
,
26
(
5
), pp.
1531
1538
.10.1007/s12206-012-0311-0
27.
Li
,
C.
,
Li
,
X.
,
Li
,
P.
, and
Ye
,
X.
,
2014
, “
Numerical Investigation of Impeller Trimming Effect on Performance of an Axial Flow Fan
,”
Energy
,
75
, pp.
534
548
.10.1016/j.energy.2014.08.015
28.
Ye
,
X.
,
Ding
,
X.
,
Zhang
,
J.
, and
Li
,
C.
,
2017
, “
Numerical Simulation of Pressure Pulsation and Transient Flow Field in an Axial Flow Fan
,”
Energy
,
129
, pp.
185
200
.10.1016/j.energy.2017.04.076
29.
Huang
,
R.
,
Ma
,
Y.
,
Li
,
H.
,
Sun
,
C.
,
Liu
,
J.
,
Zhang
,
S.
,
Wang
,
H.
, and
Hao
,
B.
,
2023
, “
Operation Parameters Multi-Objective Optimization Method of Large Vertical Mill Based on CFD-DPM
,”
Adv. Powder Technol.
,
34
(
6
), p.
104014
.10.1016/j.apt.2023.104014
30.
Peng
,
H.
,
Tang
,
A.
,
Nie
,
W.
,
Zhang
,
Y.
,
Guo
,
L.
,
Zhang
,
X.
, and
Li
,
J.
,
2024
, “
Multifaceted Analysis of the Diffusion and Deposition Patterns of Sub-10-μm Coal Dust Particles in the Respiratory Tract
,”
Process Saf. Environ. Prot.
,
190
, pp.
298
313
.10.1016/j.psep.2024.08.003
31.
Zhang
,
F.
,
Pang
,
Y.
,
Wang
,
B.
,
Wang
,
J.
,
Čuček
,
L.
, and
Varbanov
,
P. S.
,
2024
, “
Dynamic Simulation of Particle Deposition on the Blade Leading Edge With Film Cooling in Gas Turbines
,”
Therm. Sci. Eng. Prog.
,
51
, p.
102608
.10.1016/j.tsep.2024.102608
32.
Zhang
,
J.
, and
Liu
,
H.
,
2023
, “
Effect of Solid Particles on Performance and Erosion Characteristics of a High-Pressure Turbine
,”
Energy
,
272
, p.
127185
.10.1016/j.energy.2023.127185
33.
Zhang
,
J.
, and
Liu
,
H.
,
2023
, “
Multi-Objective Optimization of Aerodynamic and Erosion Resistance Performances of a High-Pressure Turbine
,”
Energy
,
277
, p.
127731
.10.1016/j.energy.2023.127731
34.
Zhang
,
J.
,
Li
,
H.
, and
Liu
,
H.
,
2024
, “
Modeling of Particle Erosion of High-Pressure Turbine Based on Dynamic Mesh Method
,”
Aerosp. Sci. Technol.
,
150
, p.
109236
.10.1016/j.ast.2024.109236
35.
Mansour
,
N.
,
Kim
,
J.
, and
Moin
,
P.
,
1989
, “
Near-Wall k-Epsilon Turbulence Modeling
,”
AIAA J.
,
27
(
8
), pp.
1068
1073
.10.2514/3.10222
36.
Yang
,
X.
,
Hao
,
Z.
, and
Feng
,
Z.
,
2022
, “
Particle Deposition Patterns on High-Pressure Turbine Vanes With Aggressive Inlet Swirl
,”
Chin. J. Aeronaut.
,
35
(
3
), pp.
75
89
.10.1016/j.cja.2021.06.005
37.
Bowen
,
C.
,
Ameri
,
A.
, and
Bons
,
J.
,
2020
, “
Challenges Associated With Replicating Rotor Blade Deposition in a Non-Rotating Annular Cascade
,”
ASME J. Turbomach.
,
142
(
9
), p.
091003
.10.1115/1.4047399
38.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J.
,
2017
, “
Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks
,”
ASME J. Turbomach.
,
139
(
9
), p.
091005
.10.1115/1.4036008
39.
Casaday
,
B.
,
Prenter
,
R.
,
Bonilla
,
C.
,
Lawrence
M.
,
Clum
C.
,
Ameri
A. A.
, and
Bons
J. P.
,
2014
, “
Deposition With Hot Streaks in an Uncooled Turbine Vane Passage
,”
ASME J. Turbomach.
,
136
(
4
), p.
041017
.10.1115/1.4025215
40.
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J.
,
2016
, “
Deposition on a Cooled Nozzle Guide Vane With Nonuniform Inlet Temperatures
,”
ASME J. Turbomach.
,
138
(
10
), p.
101005
.10.1115/1.4032924
41.
Yang
,
H.
,
Fan
,
M.
,
Liu
,
A.
, and
Dong
,
L.
,
2015
, “
General Formulas for Drag Coefficient and Settling Velocity of Sphere Based on Theoretical Law
,”
Int. J. Min. Sci. Technol.
,
25
(
2
), pp.
219
223
.10.1016/j.ijmst.2015.02.009
42.
Kumar
,
R.
,
Gopireddy
,
S. R.
,
Jana
,
A. K.
, and
Patel
,
C. M.
,
2020
, “
Study of the Discharge Behavior of Rosin-Rammler Particle-Size Distributions From Hopper by Discrete Element Method: A Systematic Analysis of Mass Flow Rate, Segregation and Velocity Profiles
,”
Powder Technol.
,
360
, pp.
818
834
.10.1016/j.powtec.2019.09.044
43.
Bailey, A.
,
Balachandran, W.
, and Williams, T.,
1983
, “
The Rosin—Rammler Size Distribution for Liquid Droplet Ensembles
,”
J. Aerosol Sci.
, 14(
1
), pp.
39
49
.10.1016/0021-8502(83)90083-6
44.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
.10.1016/S0043-1648(97)00217-2
45.
Ai
,
W.
, and
Kuhlman
,
J.
,
2011
, “
Simulation of Coal Ash Particle Deposition Experiments
,”
Energy Fuels
,
25
(
2
), pp.
708
718
.10.1021/ef101294f
46.
Han
,
Z.
, and
Lu
,
H.
,
2023
, “
Numerical Simulation of Turbulent Flow and Particle Deposition in Heat Transfer Channels With Concave Dimples
,”
Appl. Therm. Eng.
,
230
, p.
120672
.10.1016/j.applthermaleng.2023.120672
47.
Walsh
,
P. M.
,
Sayre
,
A. N.
,
Loehden
,
D. O.
,
Monroe
,
L. S.
,
Beér
,
J. M.
, and
Sarofim
,
A. F.
,
1990
, “
Deposition of Bituminous Coal Ash on an Isolated Heat Exchanger Tube: Effects of Coal Properties on Deposit Growth
,”
Prog. Energy Combust. Sci.
,
16
(
4
), pp.
327
345
.10.1016/0360-1285(90)90042-2
48.
Soltani
,
M.
, and
Ahmadi
,
G.
,
1994
, “
On Particle Adhesion and Removal Mechanisms in Turbulent Flows
,”
J. Adhes. Sci. Technol.
,
8
(
7
), pp.
763
785
.10.1163/156856194X00799
49.
El-Batsh
,
H.
, and
Haselbacher
,
H.
,
2002
, “
Numerical Investigation of the Effect of Ash Particle Deposition on the Flow Field Through Turbine Cascades
,”
ASME
Paper No. GT2002-30600.10.1115/GT2002-30600
50.
Stone
,
L.
,
Hastie
,
D.
, and
Zigan
,
S.
,
2019
, “
Using a Coupled CFD – DPM Approach to Predict Particle Settling in a Horizontal Air Stream
,”
Adv. Powder Technol.
,
30
(
4
), pp.
869
878
.10.1016/j.apt.2019.02.001
51.
Abdullahi
,
K.
,
Delgado-Saborit
,
J.
, and
Harrison
,
R.
,
2013
, “
Emissions and Indoor Concentrations of Particulate Matter and Its Specific Chemical Components From Cooking: A Review
,”
Atmos. Environ.
,
71
, pp.
260
294
.10.1016/j.atmosenv.2013.01.061
52.
Wallace
,
L. A.
,
Emmerich
,
S. J.
, and
Howard-Reed
,
C.
,
2004
, “
Howard-Reed C. Source Strengths of Ultrafine and Fine Particles Due to Cooking With a Gas Stove
,”
Environ. Sci. Technol.
,
38
(
8
), pp.
2304
2311
.10.1021/es0306260
53.
Jia
,
B.
,
Liu
,
B.
,
Liu
,
Z.
,
Shi
,
L.
,
Son
,
J. H.
,
Morawska
,
L.
,
Tan
,
W.
,
Zhu
,
L.
,
Wang
,
L.
, and
Chen
,
J.
,
2024
, “
Chemical Characterization and Influencing Factors of Gaseous and Particulate Components in Cooking Oil Fume (COF) From Traditional Chinese Dishes: Insights From High-Resolution Mass Spectrometry
,”
Environ. Pollut.
,
360
, p.
124666
.10.1016/j.envpol.2024.124666
54.
ANSYS FLUENT 12.0,
2009
,
ANSYS FLUENT 12.0 Theory Guide
,
ANSYS
, Pittsburgh, PA.
55.
Rengma
,
T.
,
Gupta
,
M.
, and
Subbarao
,
P.
,
2023
, “
A Novel Method of Optimizing the Savonius Hydrokinetic Turbine Blades Using Bezier Curve
,”
Renewable Energy
,
216
, p.
119091
.10.1016/j.renene.2023.119091
56.
Ling
,
C.
, and
Lu
,
Z.
,
2020
, “
Adaptive Kriging Coupled With Importance Sampling Strategies for Time-Variant Hybrid Reliability Analysis
,”
Appl. Math. Modell.
,
77
, pp.
1820
1841
.10.1016/j.apm.2019.08.025
57.
Helton
,
J.
, and
Davis
,
F.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.10.1016/S0951-8320(03)00058-9
58.
Alhijawi
,
B.
, and
Awajan
,
A.
,
2024
, “
Genetic Algorithms: Theory, Genetic Operators, Solutions, and Applications
,”
Evol. Intell.
,
17
(
3
), pp.
1245
1256
.10.1007/s12065-023-00822-6
59.
Frey
,
H.
, and
Patil
,
S.
,
2002
, “
Identification and Review of Sensitivity Analysis Methods
,”
Risk Anal.
,
22
(
3
), pp.
553
578
.10.1111/0272-4332.00039
60.
Wei
,
Y.
,
Ying
,
C.
,
Xu
,
J.
,
Cao
,
W.
,
Wang
,
Z.
, and
Zhu
,
Z.
,
2019
, 2019, “
Effects of Single-Arc Blade Profile Length on the Performance of a Forward Multiblade Fan
,”
Processes
,
7
(
9
), pp.
629
637
.10.3390/pr7090629
61.
Camara
,
M.
,
Ribeiro
,
G.
, and
Tosta
,
M.
,
2018
, “
A Pareto Optimal Study for the Multi-Objective Oil Platform Location Problem With NSGA-II
,”
J. Pet. Sci. Eng.
,
169
, pp.
258
268
.10.1016/j.petrol.2018.05.037
62.
Kind
,
R.
, and
Tobin
,
M.
,
1990
, “
Flow in a Centrifugal Fan of the Squirrel-Cage Type
,”
ASME J. Turbomach.
,
112
(
1
), pp.
84
90
.10.1115/1.2927426
63.
Wang
,
K.
,
Ju
,
Y.
, and
Zhang
,
C.
,
2020
, “
Experimental and Numerical Investigations on Effect of Blade Trimming on Aerodynamic Performance of Squirrel Cage Fan
,”
Int. J. Mech. Sci.
,
177
, p.
105579
.10.1016/j.ijmecsci.2020.105579
64.
Ferrari
,
C.
,
Pinelli
,
M.
,
Spina
,
P.
, Bolognin, P., Borghi, L.,
2011
, “
Fluid Dynamic Design and Optimization of Two Stage Centrifugal Fan for Industrial Burners
,”
ASME
Paper No. GT2011-46087.10.1115/GT2011-46087
65.
Xin
,
T.
,
Wei
,
J.
,
Qiuying
,
L.
,
Hou
,
G.
,
Ning
,
Z.
,
Yuchuan
,
W.
, and
Diyi
,
C.
,
2022
, “
Analysis of Hydraulic Loss of the Centrifugal Pump as Turbine Based on Internal Flow Feature and Entropy Generation Theory
,”
Sustainable Energy Technol. Assessments
,
52
, p.
102070
.10.1016/j.seta.2022.102070
66.
Pei
,
J.
,
Shen
,
J.
,
Wang
,
W.
,
Yuan
,
S.
, and
Zhao
,
J.
,
2024
, “
Evaluating Hydraulic Dissipation in a Reversible Mixed-Flow Pump for Micro-Pumped Hydro Storage Based on Entropy Production Theory
,”
Renewable Energy
,
225
, p.
120271
.10.1016/j.renene.2024.120271
67.
Younsi
,
M.
,
Bakir
,
F.
,
Kouidri
,
S.
, and Rey, R.,
2007
, “
Numerical and Experimental Study of Unsteady Flow in a Centrifugal Fan
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
7
), pp.
1025
1036
.10.1243/09576509JPE445
68.
China
Standard
,
Press
,
2017
,
Industrial Fans—Performance Testing Using Standardized Airways
,
China Standard Press
,
Beijing, China
, Standard No. GB/T
1236
2017
.
69.
China
Standard
,
Press
,
2008
,
Methods of Noise Measurement for Fans Blowers Compressors and Roots Blowers
,
China Standards Press
,
Beijing, China
, Standard No. GB/T
2888
2008
.
You do not currently have access to this content.