Abstract

Erosion in industrial pipelines is inevitable, making accurate prediction essential for ensuring equipment safety. This study employs interpretable machine learning models to predict erosion in serial elbows under gas–solid flow conditions. A predictive model was developed by integrating computational fluid dynamics (CFD) with the Euler–Lagrange method. Latin hypercube sampling (LHS) was applied to five key factors influencing pipeline erosion rates (ER). Five tree-based ensemble machine learning models were selected, optimized using grid search, and subsequently employed to predict the wall-averaged and maximum erosion rates at both upstream and downstream elbows in serial pipelines. To analyze feature interactions, correlation analysis, Shapley Additive Explanations (SHAP), and response surface methods were utilized. Results indicate that the optimized CatBoost model demonstrated high accuracy in predicting gas–solid erosion in serial elbows, while SHAP analysis enhanced model interpretability. In combination with correlation and response surface analyses, both qualitative and quantitative evaluations of factor interactions were conducted. This study improves the predictive capability and interpretability of industrial pipeline erosion modeling, offering valuable insights for erosion prevention and control in industrial applications.

References

1.
Zahedi
,
P.
,
Parvandeh
,
S.
,
Asgharpour
,
A.
,
McLaury
,
B. S.
,
Shirazi
,
S. A.
, and
McKinney
,
B. A.
,
2018
, “
Random Forest Regression Prediction of Solid Particle Erosion in Elbows
,”
Powder Technol.
,
338
, pp.
983
992
.10.1016/j.powtec.2018.07.055
2.
Bourgoyne
,
A. T.
, Jr.
,
1989
, “
Experimental Study of Erosion in Diverter Systems Due to Sand Production
,”
SPE/IADC Drilling Conference
, New Orleans, LA, Feb. 28–Mar. 3, pp.
807
816
.10.2118/18716-MS
3.
Mazumder
,
Q. H.
,
Shirazi
,
S. A.
,
McLaury
,
B. S.
,
Shadley
,
J. R.
, and
Rybicki
,
E. F.
,
2005
, “
Development and Validation of a Mechanistic Model to Predict Solid Particle Erosion in Multiphase Flow
,”
Wear
,
259
(
1–6
), pp.
203
207
.10.1016/j.wear.2005.02.109
4.
Shirazi
,
S. A.
,
McLaury
,
B. S.
, and
Arabnejad
,
H.
,
2016
, “
A Semi-Mechanistic Model for Predicting Sand Erosion Threshold Velocities in Gas and Multiphase Flow Production
,”
SPE Annual Technical Conference and Exhibition
, Dubai, UAE, Sept. 26--28, pp. 1--23.10.2118/181487-MS
5.
Kesana
,
N. R.
,
Grubb
,
S. A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2013
, “
Ultrasonic Measurement of Multiphase Flow Erosion Patterns in a Standard Elbow
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032905
.10.1115/1.4023331
6.
El-Behery
,
S. M.
,
Hamed
,
M. H.
,
Ibrahim
,
K. A.
, and
El-Kadi
,
M. A.
,
2010
, “
CFD Evaluation of Solid Particles Erosion in Curved Ducts
,”
ASME J. Fluids Eng.
,
132
(
7
), p.
071303
.10.1115/1.4001968
7.
Messa
,
G. V.
,
Ferrarese
,
G.
, and
Malavasi
,
S.
,
2015
, “
A Mixed Euler–Euler/Euler–Lagrange Approach to Erosion Prediction
,”
Wear
,
342–343
, pp.
138
153
.10.1016/j.wear.2015.08.015
8.
Messa
,
G. V.
, and
Malavasi
,
S.
,
2017
, “
The Effect of Sub-Models and Parameterizations in the Simulation of Abrasive Jet Impingement Tests
,”
Wear
,
370–371
, pp.
59
72
.10.1016/j.wear.2016.10.022
9.
Mansouri
,
A.
,
Arabnejad
,
H.
,
Shirazi
,
S. A.
, and
McLaury
,
B. S.
,
2015
, “
A Combined CFD/Experimental Methodology for Erosion Prediction
,”
Wear
,
332–333
, pp.
1090
1097
.10.1016/j.wear.2014.11.025
10.
Vieira
,
R. E.
,
Mansouri
,
A.
,
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2016
, “
Experimental and Computational Study of Erosion in Elbows Due to Sand Particles in Air Flow
,”
Powder Technol.
,
288
, pp.
339
353
.10.1016/j.powtec.2015.11.028
11.
Banakermani
,
M. R.
,
Naderan
,
H.
, and
Saffar-Avval
,
M.
,
2018
, “
An Investigation of Erosion Prediction for 15° to 90° Elbows by Numerical Simulation of Gas-Solid Flow
,”
Powder Technol.
,
334
, pp.
9
26
.10.1016/j.powtec.2018.04.033
12.
Darihaki
,
F.
,
Zhang
,
J.
, and
Shirazi
,
S. A.
,
2019
, “
Solid Particle Erosion in Gradual Contraction Geometry for a Gas-Solid System
,”
Wear
,
426–427
, pp.
643
651
.10.1016/j.wear.2019.01.106
13.
Farokhipour
,
A.
,
Mansoori
,
Z.
,
Rasteh
,
A.
,
Rasoulian
,
M. A.
,
Saffar-Avval
,
M.
, and
Ahmadi
,
G.
,
2019
, “
Study of Erosion Prediction of Turbulent Gas-Solid Flow in Plugged Tees Via CFD-DEM
,”
Powder Technol.
,
352
, pp.
136
150
.10.1016/j.powtec.2019.04.058
14.
Qili
,
W.
,
Binbin
,
J.
,
Mingquan
,
Y.
,
Min
,
H.
,
Xiaochuan
,
L.
, and
Komarneni
,
S.
,
2020
, “
Numerical Simulation of the Flow and Erosion Behavior of Exhaust Gas and Particles in Polysilicon Reduction Furnace
,”
Sci. Rep.
,
10
(
1
), p.
1909
.10.1038/s41598-020-58529-y
15.
Bilal
,
F. S.
,
Sedrez
,
T. A.
, and
Shirazi
,
S. A.
,
2021
, “
Experimental and CFD Investigations of 45 and 90 Degrees Bends and Various Elbow Curvature Radii Effects on Solid Particle Erosion
,”
Wear
,
476
, p.
203646
.10.1016/j.wear.2021.203646
16.
Zolfagharnasab
,
M. H.
,
Salimi
,
M.
,
Zolfagharnasab
,
H.
,
Alimoradi
,
H.
,
Shams
,
M.
, and
Aghanajafi
,
C.
,
2021
, “
A Novel Numerical Investigation of Erosion Wear Over Various 90-Degree Elbow Duct Sections
,”
Powder Technol.
,
380
, pp.
1
17
.10.1016/j.powtec.2020.11.059
17.
Othayq
,
M.
,
Haider
,
G.
,
Vieira
,
R. E.
, and
Shirazi
,
S. A.
,
2021
, “
Effect of Distance Between Two Elbows in Series on Erosion for Gas Dominated Conditions
,”
Wear
,
476
, p.
203618
.10.1016/j.wear.2021.203618
18.
Sedrez
,
T. A.
, and
Shirazi
,
S. A.
,
2021
, “
Erosion Evaluation of Elbows in Series With Different Configurations
,”
Wear
,
476
, p.
203683
.10.1016/j.wear.2021.203683
19.
Zhao
,
X.
,
Cao
,
X.
,
Xie
,
Z.
,
Cao
,
H.
,
Wu
,
C.
, and
Bian
,
J.
,
2022
, “
Numerical Study on the Particle Erosion of Elbows Mounted in Series in the Gas-Solid Flow
,”
J. Nat. Gas Sci. Eng
,
99
, p.
104423
.10.1016/j.jngse.2022.104423
20.
Othayq
,
M. M.
,
Bilal
,
F. S.
,
Sedrez
,
T. A.
, and
Shirazi
,
S. A.
,
2023
, “
Experimental and Numerical Assessments on Solid Particle Erosion in Upward Vertical-Horizontal and Horizontal-Vertical Downward Elbows for Multiphase and Gas-Sand Flows
,”
Wear
,
524–525
, p.
204812
.10.1016/j.wear.2023.204812
21.
Tran
,
A.
,
Furlan
,
J. M.
,
Pagalthivarthi
,
K. V.
,
Visintainer
,
R. J.
,
Wildey
,
T.
, and
Wang
,
Y.
,
2019
, “
WearGP: A Computationally Efficient Machine Learning Framework for Local Erosive Wear Predictions Via Nodal Gaussian Processes
,”
Wear
,
422–423
, pp.
9
26
.10.1016/j.wear.2018.12.081
22.
Bahrainian
,
S. S.
,
Bakhshesh
,
M.
,
Hajidavalloo
,
E.
, and
Parsi
,
M.
,
2021
, “
A Novel Approach for Solid Particle Erosion Prediction Based on Gaussian Process Regression
,”
Wear
,
466–467
, p.
203549
.10.1016/j.wear.2020.203549
23.
Zhang
,
Y.
, and
Xu
,
X.
,
2021
, “
Solid Particle Erosion Rate Predictions Through LSBoost
,”
Powder Technol.
,
388
, pp.
517
525
.10.1016/j.powtec.2021.04.072
24.
Chen
,
H.
,
Huang
,
H.
,
Wei
,
R.
, and
Wang
,
Z.
,
2024
, “
A Novel AI-Driven Model for Erosion Prediction for Elbow in Gas-Solid Two-Phase Flows
,”
Wear
,
540–541
, p.
205241
.10.1016/j.wear.2024.205241
25.
Chi
,
M.
,
Zeng
,
X.
,
Gao
,
Y.
,
Li
,
W.
,
Jiang
,
H.
, and
Sun
,
R.
,
2024
, “
The Erosion Rate Prediction for the Elbow in Shale Gas Gathering and Transportation System: RSM and GA-BP-ANN Modeling
,”
Powder Technol.
,
435
, p.
119429
.10.1016/j.powtec.2024.119429
26.
Doshi-Velez
,
F.
, and
Kim
,
B.
,
2017
, “
Towards a Rigorous Science of Interpretable Machine Learning
,” arXiv:1702.08608.
27.
Wu
,
W.
,
Zhang
,
M.
,
Zhao
,
L.
,
Dong
,
H.
, and
Zhang
,
J.
,
2023
, “
CFD-DPM Data-Driven GWO-SVR for Fast Prediction of Nitrate Decomposition in Blast Furnaces With Nozzle Arrangement Optimization
,”
Process Saf. Environ. Prot.
,
176
, pp.
438
449
.10.1016/j.psep.2023.06.029
28.
Cui
,
B.
, and
Wang
,
H.
,
2024
, “
Pipeline Corrosion Prediction and Uncertainty Analysis With an Ensemble Bayesian Neural Network Approach
,”
Process Saf. Environ. Prot.
,
187
, pp.
483
494
.10.1016/j.psep.2024.05.011
29.
Hu
,
Y.
,
Man
,
Y.
,
Ren
,
J.
,
Zhou
,
J.
, and
Zeng
,
Z.
,
2024
, “
Multi-Step Carbon Emissions Forecasting Model for Industrial Process Based on a New Strategy and Machine Learning Methods
,”
Process Saf. Environ. Prot.
,
187
, pp.
1213
1233
.10.1016/j.psep.2024.05.043
30.
Kim
,
T.
,
Kim
,
K.
,
Hyung
,
J.
,
Park
,
H.
,
Oh
,
Y.
, and
Koo
,
J.
,
2024
, “
An Interpretable Machine Learning-Based Pitting Corrosion Depth Prediction Model for Steel Drinking Water Pipelines
,”
Process Saf. Environ. Prot.
,
190
, pp.
571
585
.10.1016/j.psep.2024.08.038
31.
Mesghali
,
H.
,
Akhlaghi
,
B.
,
Gozalpour
,
N.
,
Mohammadpour
,
J.
,
Salehi
,
F.
, and
Abbassi
,
R.
,
2024
, “
Predicting Maximum Pitting Corrosion Depth in Buried Transmission Pipelines: Insights From Tree-Based Machine Learning and Identification of Influential Factors
,”
Process Saf. Environ. Prot.
,
187
, pp.
1269
1285
.10.1016/j.psep.2024.05.014
32.
Launder
,
B. E.
,
Reece
,
G. J.
, and
Rodi
,
W.
,
1975
, “
Progress in the Development of a Reynolds-Stress Turbulence Closure
,”
J. Fluid Mech.
,
68
(
3
), pp.
537
566
.10.1017/S0022112075001814
33.
Rodi
,
W.
,
Majumdar
,
S.
, and
Schönung
,
B.
,
1989
, “
Finite Volume Methods for Two-Dimensional Incompressible Flows With Complex Boundaries
,”
Comput. Methods Appl. Mech. Eng.
,
75
(
1–3
), pp.
369
392
.10.1016/0045-7825(89)90037-6
34.
Balogh
,
M.
,
Parente
,
A.
, and
Benocci
,
C.
,
2012
, “
RANS Simulation of ABL Flow Over Complex Terrains Applying an Enhanced K-ε Model and Wall Function Formulation: Implementation and Comparison for Fluent and OpenFOAM
,”
J. Wind Eng. Ind. Aerodyn.
,
104–106
, pp.
360
368
.10.1016/j.jweia.2012.02.023
35.
Haider
,
A.
, and
Levenspiel
,
O.
,
1989
, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
,
58
(
1
), pp.
63
70
.10.1016/0032-5910(89)80008-7
36.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1991
, “
Dispersion and Deposition of Brownian Particles From Point Sources in a Simulated Turbulent Channel Flow
,”
J. Colloid Interface Sci.
,
147
(
1
), pp.
233
250
.10.1016/0021-9797(91)90151-W
37.
Zamani
,
M.
,
Seddighi
,
S.
, and
Nazif
,
H. R.
,
2017
, “
Erosion of Natural Gas Elbows Due to Rotating Particles in Turbulent Gas-Solid Flow
,”
J. Nat. Gas Sci. Eng.
,
40
, pp.
91
113
.10.1016/j.jngse.2017.01.034
38.
Huser
,
A.
, and
Kvernvold
,
O.
,
1998
, “
Prediction of Sand Erosion in Process and Pipe Components
,”
1st North American Conference on Multiphase Technology: Technology from the Arctic to the Tropics
, Banff, AB, Canada, June 10--11, pp.
217
227
.https://www.scribd.com/document/64164774/PredictionOfSandErosionInProcess-tcm60-8476
39.
Finnie
,
I.
,
1960
, “
Erosion of Surfaces by Solid Particles
,”
Wear
,
3
(
2
), pp.
87
103
.10.1016/0043-1648(60)90055-7
40.
Oka
,
Y. I.
,
Okamura
,
K.
, and
Yoshida
,
T.
,
2005
, “
Practical Estimation of Erosion Damage Caused by Solid Particle Impact: Part 1: Effects of Impact Parameters on a Predictive Equation
,”
Wear
,
259
(
1–6
), pp.
95
101
.10.1016/j.wear.2005.01.039
41.
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
2000
, “
An Alternate Method to API RP 14E for Predicting Solids Erosion in Multiphase Flow
,”
ASME J. Energy Resour. Technol.
,
122
(
3
), pp.
115
122
.10.1115/1.1288209
42.
McLaury
,
B. S.
, and
Shirazi
,
S. A.
,
1999
, “
Generalization of API RP 14E for Erosive Service in Multiphase Production
,”
SPE Annual Technical Conference and Exhibition
, Houston, TX, Oct. 3--6.10.2118/56812-MS
43.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D.
,
1998
, “
A Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
.10.1016/S0043-1648(97)00217-2
44.
Grant
,
G.
, and
Tabakoff
,
W.
,
1975
, “
Erosion Prediction in Turbomachinery Resulting From Environmental Solid Particles
,”
J. Aircr.
,
12
(
5
), pp.
471
478
.10.2514/3.59826
45.
Sommerfeld
,
M.
, and
Huber
,
N.
,
1999
, “
Experimental Analysis and Modelling of Particle-Wall Collisions
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1457
1489
.10.1016/S0301-9322(99)00047-6
46.
Cengel
,
Y.
, and
Cimbala
,
J.
,
2013
,
Ebook: Fluid Mechanics Fundamentals and Applications (Si Units)
,
McGraw-Hill
, New York.
47.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
, 116(3), pp.405--413.10.1115/1.2910291
48.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
49.
Iman
,
R. L.
, and
Conover
,
W.-J.
,
1982
, “
A Distribution-Free Approach to Inducing Rank Correlation Among Input Variables
,”
Commun. Stat.-Simul. Comput.
,
11
(
3
), pp.
311
334
.10.1080/03610918208812265
50.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
, pp.
5
32
.10.1023/A:1010933404324
51.
Lundberg
,
S. M.
, and
Lee
,
S.-I.
,
2017
, “
A Unified Approach to Interpreting Model Predictions
,”
Proceedings of the 31st International Conference on Neural Information Processing Systems
,
Long Beach, CA
, Dec. 4--9, pp.
4768
4777
.10.5555/3295222.3295230
52.
Mohamed Khalifa
,
P. B.
,
Barka
,
N.
, and
Brousseau
,
J.
,
2019
, “
Reduction of Edge Effect Using Response Surface Methodology and Artificial Neural Network Modeling of a Spur Gear Treated by Induction With Flux Concentrators
,”
Int. J. Adv. Manuf. Technol.
,
104
(
1–4
), pp.
103
117
.10.1007/s00170-019-03817-9
53.
Dehghan‐Shoar
,
Z.
,
Hardacre
,
A. K.
,
Meerdink
,
G.
, and
Brennan
,
C. S.
,
2011
, “
Lycopene Extraction From Extruded Products Containing Tomato Skin
,”
Int. J. Food Sci. Amp Technol.
,
46
(
2
), pp.
365
371
.10.1111/j.1365-2621.2010.02491.x
54.
Sin
,
H. N.
,
Yusof
,
S.
,
Hamid
,
N. S. A.
, and
Rahman
,
R. A.
,
2006
, “
Optimization of Hot Water Extraction for Sapodilla Juice Using Response Surface Methodology
,”
J. Food Eng.
,
74
(
3
), pp.
352
358
.10.1016/j.jfoodeng.2005.03.005
55.
Qilin
,
L.
,
Kai
,
D.
,
Weining
,
L.
,
Linglei
,
K.
,
Jiajia
,
C.
,
Daping
,
S.
, and
Xichao
,
W.
,
2021
, “
Temperature Uniformity of Profiled Grinding Wheel Under High-Frequency Induction Brazing
,”
Int. J. Adv. Manuf. Technol.
,
117
(
3–4
), pp.
1091
1099
.10.1007/s00170-021-07608-z
You do not currently have access to this content.