Abstract

The overall performance of the micro-turbojet engine (MTE) is typically assessed through parametric modeling, methods of component series calculation (CSC), and prototype experiments. This paper proposes a new method—torque balance determination (TBD) method. It is based on computational fluid dynamics (CFD) theory and can automatically determine the difference in torque between the compressor and turbine, while ensuring systemic balance. The performance and flow field of the MTE were assessed based on TBD method under rated operating conditions. Compared with the factory design parameters (FDP), the errors of the thrust and exhaust temperature obtained were 1% and 2.4%, respectively, which proved the accuracy of the TBD method. Additionally, a test platform for the MTE was built to further verify the accuracy of the TBD method. The high confidence level confirms the accuracy of the experimental plan and results. Moreover, errors between the experimental results and TBD method were small, which were 0.3% (outlet total temperature) and 4.2% (thrust). Finally, compared with the CSC method, the TBD method can significantly reduce the thrust error from 7.6% to 1%, while the errors of other parameters are not significantly different, reducing the impact of error accumulation. The above error analysis verified the accuracy and reasonableness of the TBD method. The proposed method can be used to establish a simulation model of the entire engine and accurately analyze its performance during its design. This is a feasible means of optimizing the performance of the MTE and shortening its development cycle.

References

1.
Yang
,
C.
,
Wu
,
H.
,
Du
,
J.
,
Zhang
,
H.
, and
Yang
,
J.
,
2022
, “
Full-Engine Simulation of Micro Gas Turbine Based on Time-Marching Throughflow Method
,”
Appl. Therm. Eng.
,
217
, p.
119213
.10.1016/j.applthermaleng.2022.119213
2.
Zhang
,
C.
,
Chen
,
L.
,
Ding
,
S.
,
Zhou
,
X.
,
Chen
,
R.
,
Zhang
,
X.
,
Yu
,
Z.
, and
Wang
,
J.
,
2022
, “
Mitigation Effects of Alternative Aviation Fuels on Non-Volatile Particulate Matter Emissions From Aircraft Gas Turbine Engines: A Review
,”
Sci. Total Environ.
,
820
, p.
153233
.10.1016/j.scitotenv.2022.153233
3.
Liu
,
Y.
,
Pan
,
C.
,
Liu
,
X.
, and
Yang
,
J.
,
2024
, “
An Aerodynamic Investigation of the Last-Stage Turbine in an Upgraded Gas Turbine
,”
ASME J. Fluids Eng.
,
146
(
6
), p.
061202
.10.1115/1.4064386
4.
Zhang
,
G.
,
Li
,
Y.
,
Jin
,
Z.
,
Dykas
,
S.
, and
Cai
,
X.
,
2024
, “
A Novel Carbon Dioxide Capture Technology (CCT) Based on Non-Equilibrium Condensation Characteristics: Numerical Modelling, Nozzle Design and Structure Optimization
,”
Energy
,
286
, p.
129603
.10.1016/j.energy.2023.129603
5.
Yang
,
B.
,
Fang
,
X.
,
Zhang
,
L.
,
Zhuang
,
F.
,
Bi
,
M.
,
Chen
,
C.
,
Li
,
G.
, and
Wang
,
X.
,
2019
, “
Applicability of Empirical Models of Isentropic Efficiency and Mass Flow Rate of Dynamic Compressors to Jet Engines
,”
Prog. Aerosp. Sci.
,
106
, pp.
32
42
.10.1016/j.paerosci.2019.01.007
6.
Li
,
J.
, and
Li
,
Y.
,
2023
, “
Micro Gas Turbine: Developments, Applications, and Key Technologies on Components
,”
Propul. Power Res.
,
12
(
1
), pp.
1
43
.10.1016/j.jppr.2023.01.002
7.
Ávila
,
C. D.
,
Cardona
,
S.
,
Abdullah
,
M.
,
Younes
,
M.
,
Jamal
,
A.
,
Guiberti
,
T. F.
, and
Roberts
,
W. L.
,
2023
, “
Experimental Assessment of the Performance of a Commercial Micro Gas Turbine Fueled by Ammonia-Methane Blends
,”
Appl. Energy Combust. Sci.
,
13
, p.
100104
.10.1016/j.jaecs.2022.100104
8.
Ji
,
F.
,
Zhang
,
X.
,
Du
,
F.
,
Ding
,
S.
,
Zhao
,
Y.
,
Xu
,
Z.
,
Wang
,
Y.
, and
Zhou
,
Y.
,
2020
, “
Experimental and Numerical Investigation on Micro Gas Turbine as a Range Extender for Electric Vehicle
,”
Appl. Therm. Eng.
,
173
, p.
115236
.10.1016/j.applthermaleng.2020.115236
9.
Kim
,
S.
,
Choi
,
S.
, and
Rhee
,
D.
,
2018
, “
Off-Design Performance Analysis Based on Experimental Data of a Micro Gas Turbine Engine
,”
J. Korean Soc. Propul. Eng.
,
22
(
6
), pp.
64
71
.10.30574/gjeta.2020.4.2.0046
10.
Wu
,
X.
,
Hu
,
X.
,
Xiang
,
X.
,
Lin
,
S.
,
You
,
J.
, and
Tian
,
F.
,
2023
, “
An Analysis Approach for Micro Gas Turbine Engine's Performance by Experiment and Numerical Simulation
,”
Case Stud. Therm. Eng.
,
49
, p.
103305
.10.1016/j.csite.2023.103305
11.
Cong
,
L.
,
Zhijun
,
S.
,
Yimin
,
L.
,
Zhongning
,
Z.
, and
Lina
,
M.
,
2024
, “
Experimental Study on the Performance of Micro Gas Turbines Under Different Intake Environments
,”
Case Stud. Therm. Eng.
,
58
, p.
104415
.10.1016/j.csite.2024.104415
12.
Wang
,
W.
,
Cai
,
R.
, and
Zhang
,
N.
,
2004
, “
General Characteristics of Single Shaft Microturbine Set at Variable Speed Operation and Its Optimization
,”
Appl. Therm. Eng.
,
24
(
13
), pp.
1851
1863
.10.1016/j.applthermaleng.2003.12.012
13.
Duan
,
J.
,
Fan
,
S.
,
An
,
Q.
,
Sun
,
L.
, and
Wang
,
G.
,
2017
, “
A Comparison of Micro Gas Turbine Operation Modes for Optimal Efficiency Based on a Nonlinear Model
,”
Energy
,
134
, pp.
400
411
.10.1016/j.energy.2017.06.035
14.
Colera
,
M.
,
Soria
,
Á.
, and
Ballester
,
J.
,
2019
, “
A Numerical Scheme for the Thermodynamic Analysis of Gas Turbines
,”
Appl. Therm. Eng.
,
147
, pp.
521
536
.10.1016/j.applthermaleng.2018.10.103
15.
Wang
,
H.
,
Li
,
X.-S.
,
Ren
,
X.
,
Gu
,
C.-W.
, and
Ji
,
X.-X.
,
2017
, “
A Thermodynamic-Cycle Performance Analysis Method and Application on a Three-Shaft Gas Turbine
,”
Appl. Therm. Eng.
,
127
, pp.
465
472
.10.1016/j.applthermaleng.2017.08.061
16.
Zhou
,
Q.
,
Yin
,
Z.
,
Zhang
,
H.
,
Wang
,
T.
,
Sun
,
W.
, and
Tan
,
C.
,
2020
, “
Performance Analysis and Optimized Control Strategy for a Three-Shaft, Recuperated Gas Turbine With Power Turbine Variable Area Nozzle
,”
Appl. Therm. Eng.
,
164
, p.
114353
.10.1016/j.applthermaleng.2019.114353
17.
Ferlauto
,
M.
, and
Marsilio
,
R.
,
2018
, “
Numerical Simulation of the Unsteady Flowfield in Complete Propulsion Systems
,”
Adv. Aircr. Spacecr. Sci.
,
5
(
3
), pp.
349
362
.10.12989/aas.2018.5.3.349
18.
Gimelli
,
A.
, and
Sannino
,
R.
,
2021
, “
A Micro Gas Turbine One-Dimensional Model: Approach Description, Calibration With a Vector Optimization Methodology and Validation
,”
Appl. Therm. Eng.
,
188
, p.
116644
.10.1016/j.applthermaleng.2021.116644
19.
Ivanov
,
M. J.
,
Mamaev
,
B. I.
, and
Nigmatullin
,
R. Z.
,
2008
, “
United Modeling of Working Process in Aircraft Gas Turbine Engines
,”
ASME
Paper No. GT2008-50185.10.1115/GT2008-50185
20.
Turner
,
M. G.
,
Norris
,
A.
, and
Veres
,
J. P.
,
2003
, “
High-Fidelity Three-Dimensional Simulation of the GE90
,”
AIAA
Paper No. 2003-3996.10.2514/6.2003-3996
21.
Turner
,
M. G.
,
Reed
,
J. A.
,
Ryder
,
R.
, and
Veres
,
J. P.
,
2004
, “
Multi-Fidelity Simulation of a Turbofan Engine With Results Zoomed Into Mini-Maps for a Zero-D Cycle Simulation
,”
ASME
Paper No. GT2004-53956.10.1115/GT2004-53956
22.
Krivcov
,
A. V.
,
Shabliy
,
L. S.
, and
Baturin
,
O. V.
,
2014
, “
Gas-Dynamic Modeling of Gas Turbine Engine Components Collaborative Workflow
,”
Open Mech. Eng. J.
,
8
(
1
), pp.
445
449
.10.2174/1874155X01408010445
23.
Tkachenko
,
A.
,
Kuz'michev
,
V.
,
Krupenich
,
I.
, and
Rybakov
,
V.
,
2016
, “
Gas Turbine Engine Optimization at Conceptual Designing
,”
MATEC Web Conf.
,
77
, p.
01027
.10.1051/matecconf/20167701027
24.
Teixeira
,
M.
,
Romagnosi
,
L.
,
Mezine
,
M.
,
Baux
,
Y.
,
Anker
,
J.
,
Claramunt
,
K.
, and
Hirsch
,
C.
,
2018
, “
A Methodology for Fully-Coupled CFD Engine Simulations, Applied to a Micro Gas Turbine Engine
,”
ASME
Paper No. GT2018-76870.10.1115/GT2018-76870
25.
Herzog
,
N.
,
Wilhelm
,
D.
,
Koch
,
S.
,
Purea
,
A.
,
Osen
,
D.
,
Knott
,
B.
, and
Engelke
,
F.
,
2016
, “
Aerodynamic Optimization of a Microturbine Inserted in a Magic-Angle Spinning System
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
121106
.10.1115/1.4034188
26.
Gundersen
,
T. Ø. S.
,
Torbergsen
,
E. A.
,
Balakin
,
B.
,
Arntzen
,
B. J.
, and
Hoffmann
,
A. C.
,
2025
, “
Improved Prediction of Pump Performance Through the Rotation–Curvature Correction—An Experimental and Numerical Study of a Low-Specific-Speed Helico-Axial Compression Cell in Series
,”
ASME J. Fluids Eng.
,
147
(
5
), p.
051202
.10.1115/1.4067059
27.
Al-Am
,
J.
,
Giauque
,
A.
,
Clair
,
V.
,
Boudet
,
J.
, and
Gea-Aguilera
,
F.
,
2024
, “
Direct-Noise of an Ultrahigh-Bypass-Ratio Turbofan: Periodic-Sector versus Full-Annulus Large-Eddy Simulations
,”
AIAA J.
,
62
(
8
), pp.
1
15
.10.2514/1.J063596
28.
Zhang
,
T.
,
Wu
,
L.
,
Li
,
Z.
, and
Liu
,
S.
,
2024
, “
Full-Cycle Grids Numerical Simulation of the Performance for Newly Developed Micro Turbine Engine
,”
Int. J. Numer. Methods Heat Fluid Flow
, 35(1), pp.
231
256
.10.1108/HFF-07-2024-0527
29.
Swiwin Turbine
,
2020
, “
Swiwin SW80B Technical Specification
,” Swiwin Turbojet Equipment CO., Ltd, Hebei, China, accessed June 5, 2025, http://www.swiwin.com/
30.
Sun
,
D.
,
Zhu
,
H.
,
Xu
,
D.
,
Hu
,
J.
, and
Sun
,
X.
,
2025
, “
Stall Inception Analysis on Axial Compressors With Different Rotor Loading Distributions Under Radial Inlet Distortions
,”
ASME J. Fluids Eng.
,
147
(
2
), p.
021202
.10.1115/1.4066640
31.
Weifeng
,
H.
,
Chen
,
W.
,
Pengfei
,
S.
,
Zeyu
,
L.
,
Adam
,
A.
, and
Dong
,
H.
,
2025
, “
Numerical Investigation on Tip Clearance Leakage Control for a Radial Turbine With Tip Control Holes
,”
ASME J. Fluids Eng.
,
147
(
6
), p.
061201
.10.1115/1.4067274
You do not currently have access to this content.