Abstract

Modern propulsion systems use serpentine engine inlet ducts to reduce thermal and radar signatures, while also enhancing aerodynamic and engine performance. However, these ducts can introduce adverse flow effects, such as flow separation and vortex formation, potentially degrading engine efficiency. This study combines computational and experimental methods to develop and validate a vane assembly designed to reduce the strength of a twin vortex flow at the aerodynamic interface plane (AIP) of such ducts. A numerical analysis was conducted using a Cartesian grid-based flow solver with adjoint sensitivity analysis to optimize vane geometries, aiming to minimize cross-flow velocities at the AIP through a steepest descent algorithm. A low-speed benchtop experiment was employed to validate additively manufactured vane geometries. Stereoscopic particle image velocimetry (PIV) was employed to measure three-component velocity fields downstream of the vanes, providing insights into in-plane velocity profiles, axial velocity contours, and swirl angles. Both numerical and experimental results indicated a reduction in swirl angles from 15 deg to below 3 deg. Swirl descriptors supported the effectiveness of the distortion remover, showing a 62% decrease in swirl intensity (SI). An analysis of the normal components of Reynolds stress tensor further demonstrated the effectiveness of the device in mitigating flow distortions. This integrated study offers practical insights into the passive control of flow distortions in propulsion systems, presenting potential applications for enhancing aerospace performance.

References

1.
Sanders
,
D. D.
,
Nessler
,
C.
,
Copenhaver
,
W. W.
,
List
,
M. G.
, and
Janczewski
,
T. J.
,
2016
, “
Computational and Experimental Evaluation of a Complex Inlet Swirl Pattern Generation System
,”
AIAA
Paper No. 2016-5008.10.2514/6.2016-5008
2.
Felder
,
J.
,
Kim
,
H.
, and
Brown
,
G.
,
2009
, “
Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft
,”
AIAA
Paper No. 2009-1132.10.2514/6.2009-1132
3.
Plas
,
A.
,
Crichton
,
D.
,
Sargeant
,
M.
,
Hynes
,
T.
,
Greitzer
,
E.
,
Hall
,
C.
, and
Madani
,
V.
,
2007
, “
Performance of a Boundary Layer Ingesting (BLI) Propulsion System
,”
AIAA
Paper No. 2007-450.10.2514/6.2007-450
4.
Hall
,
D. K.
,
Greitzer
,
E.
,
Uranga
,
A.
,
Drela
,
M.
, and
Pandya
,
S.
,
2022
, “
Inlet Flow Distortion in an Advanced Civil Transport Boundary Layer Ingesting Engine Installation
,”
ASME J. Turbomach.
,
144
(
10
), p.
101002
.10.1115/1.4054035
5.
Gunn
,
E.
, and
Hall
,
C.
,
2014
, “
Aerodynamics of Boundary Layer Ingesting Fans
,”
ASME
Paper No. GT2014-26142.10.1115/GT2014-26142
6.
Ochs
,
S. S.
,
Tillman
,
G.
,
Joo
,
J.
, and
Voytovych
,
D. M.
,
2017
, “
Computational Fluid Dynamics-Based Analysis of Boundary Layer Ingesting Propulsion
,”
J. Propul. Power
,
33
(
2
), pp.
522
530
.10.2514/1.B36069
7.
Perovic
,
D.
,
Hall
,
C.
, and
Gunn
,
E.
,
2019
, “
Stall Inception in a Boundary Layer Ingesting Fan
,”
ASME J. Turbomach.
,
141
(
9
), p.
091007
.10.1115/1.4043644
8.
Guimarães
,
T.
,
Lowe
,
K. T.
, and
O'brien
,
W. F.
,
2018
, “
StreamVane Turbofan Inlet Swirl Distortion Generator: Mean Flow and Turbulence Structure
,”
J. Propul. Power
,
34
(
2
), pp.
340
353
.10.2514/1.B36422
9.
Nessler
,
C.
,
Copenhaver
,
W.
, and
List
,
M.
,
2013
, “
Serpentine Diffuser Performance With Emphasis on Future Introduction to a Transonic Fan
,”
AIAA
Paper No. 2013-219.10.2514/6.2013-219
10.
Davis
,
M.
,
Hale
,
A.
, and
Beale
,
D.
,
2002
, “
An Argument for Enhancement of the Current Inlet Distortion Ground Test Practice for Aircraft Gas Turbine Engines
,”
ASME J. Turbomach.
, 124(2), pp.
235
241
.10.1115/1.1451087
11.
Billet
,
G.
,
Huard
,
J.
,
Chevalier
,
P.
, and
Laval
,
P.
,
1988
, “
Experimental and Numerical Study of the Response of an Axial Compressor to Distorted Inlet Flow
,”
ASME J. Fluids Eng.
,
110
(
4
), pp.
355
360
.10.1115/1.3243563
12.
Sun
,
D.
,
Zhu
,
H.
,
Xu
,
D.
,
Hu
,
J.
, and
Sun
,
X.
,
2025
, “
Stall Inception Analysis on Axial Compressors With Different Rotor Loading Distributions Under Radial Inlet Distortions
,”
ASME J. Fluids Eng.
,
147
(
2
), p.
021202
.10.1115/1.4066640
13.
Sheoran
,
Y.
,
Bouldin
,
B.
, and
Krishnan
,
P. M.
,
2009
, “
Advancements in the Design of an Adaptable Swirl Distortion Generator for Testing Gas Turbine Engines
,”
ASME
Paper No. GT2009-59146.10.1115/GT2009-59146
14.
Hayden
,
A.
, and
Untaroiu
,
A.
,
2022
, “
Strain Response and Aerodynamic Damping of a Swirl Distortion Generator Using Computational Fluid Dynamics
,”
ASME J. Fluids Eng.
,
144
(
3
), p.
031204
.10.1115/1.4052139
15.
Hoopes
,
K. M.
, and
O'Brien
,
W. F.
,
2013
, “
The StreamVane Method: A New Way to Generate Swirl Distortion for Jet Engine Research
,”
AIAA
Paper No. 2013-3665.10.2514/6.2013-3665
16.
MacManus
,
D. G.
,
Chiereghin
,
N.
,
Prieto
,
D. G.
, and
Zachos
,
P.
,
2017
, “
Complex Aeroengine Intake Ducts and Dynamic Distortion
,”
AIAA J.
,
55
(
7
), pp.
2395
2409
.10.2514/1.J054905
17.
Zachos
,
P. K.
,
MacManus
,
D. G.
,
Prieto
,
D. G.
, and
Chiereghin
,
N.
,
2016
, “
Flow Distortion Measurements in Convoluted Aeroengine Intakes
,”
AIAA J.
,
54
(
9
), pp.
2819
2832
.10.2514/1.J054904
18.
Frohnapfel
,
D. J.
, and
O'Brien
,
W. F.
,
2015
, “
Fan Response to Inlet Swirl Distortions Produced by Boundary Layer Ingesting Aircraft Configurations
,”
AIAA
Paper No. 2015-3804.10.2514/6.2015-3804
19.
Hobson
,
G.
, and
Shreeve
,
R.
,
1993
, “
Inlet Turbulence Distortion and Viscous Flow Development in a Controlled-Diffusion Compressor Cascade at Very High Incidence
,”
J. Propul. Power
,
9
(
3
), pp.
397
404
.10.2514/3.23635
20.
Keerthi
,
M.
,
Kushari
,
A.
, and
Somasundaram
,
V.
,
2017
, “
Experimental Study of Suction Flow Control Effectiveness in a Serpentine Intake
,”
ASME J. Fluids Eng.
,
139
(
10
), p.
101104
.10.1115/1.4036827
21.
Motycka
,
D.
,
1976
, “
Ground Vortex–Limit to Engine/Reverser Operation
,”
ASME. J. Eng. Power.
, 98(2), pp.
258
263
.10.1115/1.3446157
22.
Reichert
,
B.
, and
Wendt
,
B.
,
1996
, “
Improving Curved Subsonic Diffuser Performance With Vortex Generators
,”
AIAA J.
,
34
(
1
), pp.
65
72
.10.2514/3.13022
23.
Brown
,
A. C.
,
Nawrocki
,
H. F.
, and
Paley
,
P. N.
,
1968
, “
Subsonic Diffusers Designed Integrally With Vortex Generators
,”
J. Aircr.
,
5
(
3
), pp.
221
229
.10.2514/3.43931
24.
Paul
,
A. R.
,
Ranjan
,
P.
,
Patel
,
V. K.
, and
Jain
,
A.
,
2013
, “
Comparative Studies on Flow Control in Rectangular S-Duct Diffuser Using Submerged-Vortex Generators
,”
Aerosp. Sci. Technol.
,
28
(
1
), pp.
332
343
.10.1016/j.ast.2012.11.014
25.
Mitchell
,
G. A.
,
1968
, “
Performance of Centerbody Vortex Generators in an Axisymmetric Mixed-Compression Inlet at Mach Numbers From 2.0 to 3.0
,” National Aeronautics and Space Administration, Lewis Research Center, Cleveland, OH, Report No.
NASA TN D-4675
.https://ntrs.nasa.gov/api/citations/19680019323/downloads/19680019323.pdf
26.
Kaldschmidt
,
G.
,
Syltebo
,
B.
, and
Ting
,
C.
,
1973
, “
A 727 Airplane Center Duct Inlet Low Speed Performance Confirmation Model Test for Refanned JT8D Engines, Phase 2
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-CR-134534
.https://ntrs.nasa.gov/api/citations/19740009642/downloads/19740009642.pdf
27.
Guimaraes Bucalo
,
T.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2016
, “
An Overview of Recent Results Using the StreamVane Method for Generating Tailored Swirl Distortion in Jet Engine Research
,”
AIAA
Paper No. 2016-0534.10.2514/6.2016-0534
28.
Schneck
,
W. C.
,
Guimaraes
,
T.
,
Frohnapfel
,
D. J.
,
Lowe
,
K. T.
,
O'Brien
,
W. F.
, and
Copenhaver
,
W. W.
,
2017
, “
Swirling Flow Evolution Part 2: Streamflow 2D+t Model Validated With Stereo PIV Measurements
,”
AIAA
Paper No. 2017-1622.10.2514/6.2017-1622
29.
Guimaraes
,
T.
,
Copenhaver
,
W. W.
,
Schneck
,
W. C.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2017
, “
Swirling Flow Evolution Part 1: Design and Stereo PIV Measurements at Select Planes
,”
AIAA
Paper No. 2017-1620.10.2514/6.2017-1620
30.
Karim
,
A. U.
,
Guimaraes
,
T.
,
Danilov
,
P.
, and
Boschitsch
,
A.
,
2024
, “
Flow Distortion Reduction by Blade Cascades, Part 2: Experimental Validation
,”
AIAA
Paper No. 2024-1198.10.2514/6.2024-1198
31.
Danilov
,
P.
,
Boschitsch
,
A.
,
Karim
,
A. U.
, and
Guimaraes
,
T.
,
2024
, “
Flow Distortion Reduction by Blade Cascades, Part 1: Adjoint Optimization
,”
AIAA
Paper No. 2024-1197.10.2514/6.2024-1197
32.
Xie
,
W.
,
Zeng
,
C.
,
Wang
,
Z.
, and
Guo
,
S.
,
2022
, “
Flow Control for a Submerged Inlet
,”
ASME J. Fluids Eng.
,
144
(
12
), p.
121202
.10.1115/1.4055073
33.
Sullerey
,
R.
,
Mishra
,
S.
, and
Pradeep
,
A.
,
2002
, “
Application of Boundary Layer Fences and Vortex Generators in Improving Performance of S-Duct Diffusers
,”
ASME J. Fluids Eng.
,
124
(
1
), pp.
136
142
.10.1115/1.1436096
34.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
35.
Dring
,
R.
,
1982
, “
Sizing Criteria for Laser Anemometry Particles
,”
ASME. J. Fluids Eng.
, 104(1), pp.
15
17
.10.1115/1.3240844
36.
Guimarães
,
T.
,
Lowe
,
K. T.
, and
O'Brien
,
W. F.
,
2019
, “
Vortical Flow Development in Round Ducts Across Scales for Engine Inlet Applications
,”
Exp. Fluids
,
60
(
4
), pp.
1
16
.
37.
Sciacchitano
,
A.
,
2019
, “
Uncertainty Quantification in Particle Image Velocimetry
,”
Meas. Sci. Technol.
,
30
(
9
), p.
092001
.10.1088/1361-6501/ab1db8
38.
Wieneke
,
B.
,
2015
, “
PIV Uncertainty Quantification From Correlation Statistics
,”
Meas. Sci. Technol.
,
26
(
7
), p.
074002
.10.1088/0957-0233/26/7/074002
39.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
40.
Society of Automotive Engineers Aerospace
,
2007
, “
A Methodology for Assessing Inlet Swirl Distortion
,”
SAE
Paper No. AIR5686.10.4271/AIR5686
41.
Gil-Prieto
,
D.
,
Zachos
,
P. K.
,
MacManus
,
D. G.
, and
McLelland
,
G.
,
2019
, “
Unsteady Characteristics of S-Duct Intake Flow Distortion
,”
Aerosp. Sci. Technol.
,
84
, pp.
938
952
.10.1016/j.ast.2018.10.020
42.
Guimarães
,
T.
,
Todd Lowe
,
K.
, and
O'Brien
,
W. F.
,
2018
, “
Complex Flow Generation and Development in a Full-Scale Turbofan Inlet
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
082606
.10.1115/1.4039179
43.
Guimaraes
,
T. B.
,
Lowe
,
K. T.
,
Nelson
,
M.
,
O'Brien
,
W. F.
, and
Kirk
,
C.
,
2015
, “
Stereoscopic PIV Measurements in a Turbofan Engine Inlet With Tailored Swirl Distortion
,”
AIAA
Paper No. 2015-2866.10.2514/6.2015-2866
44.
Williams
,
D.
, and
Yost
,
J.
,
1973
, “
Some Aspects of Inlet/Engine Flow Compatibility
,”
Aeronaut. J.
,
77
(
753
), pp.
483
492
.10.1017/S0001924000041610
You do not currently have access to this content.